Table of Contents

INTRODUCTION
3

FREQUENTLY ASKED QUESTIONS
4
- GENERAL QUESTIONS 4
- ASSESSMENT QUESTIONS 8
- GRADE BOOK QUESTIONS 12

DOCUMENTS
15
- GUIDELINES FOR STANDARDS-BASED LEARNING IN POWERSCHOOL 16
- SAMPLE RUBRICS 25
- REASSESSMENT AGREEMENT 37

SUPPORTING RESOURCES
39
- INTERNET RESOURCES 40
- HOMEWORK: HOW WE ASSIGN AND MARK IT 41
- SEVEN REASONS FOR STANDARDS-BASED GRADING 45
- GRADING TO COMMUNICATE 49
- GRADING AND ASSESSMENT BOOKS 54

PARENT GUIDE
55
Introduction
Assessment, grading, and record keeping are among the most important tasks a classroom teacher performs. These processes help teachers determine what and how well students have learned and serve as a vehicle for providing feedback about student learning to parents and students. Standards-based learning, or SBL, calls for a clear identification of what students should know and be able to do. Increased clarity in terms of student learning goals quite naturally calls for increased accuracy in terms of assessment, grading and record keeping.

Standards-based grading focuses on measuring students’ proficiency on a specific set of outcomes. These outcomes are shared with students at the outset of the course, along with a learning scale, or rubric, that explains the essential outcome in detail. A student’s progress toward proficiency is tracked by performance on learning tasks that align to the outcome, which encourages student ownership of the learning and allows the teacher to provide accurate feedback to the student. The goal of a standards-based approach is to clearly communicate to students and parents what is expected of the students and how to help them be successful in their educational journey.

The purpose of this handbook is to introduce you to Sheridan County School District 1’s implementation of standards-based learning including our rationale, goals, expectations, and technical details. This handbook is applicable to grades 6-12 and is yours to use – write in it, add to it, and make it a resource that is useful to you.

Implementation
Standards-Based Learning (SLB) is dependent upon a valid set of outcomes and common outcome assessments for each course. Sheridan County School District 1 completed both of these items for mathematics in 2014. As we continue to develop and validate other subject area outcomes and assessments, we will utilize SBL and grading practices for those courses in subsequent years.

Rationale
“Why would anyone want to change current grading practices? The answer is quite simple: Grades are so imprecise that they are almost meaningless.”

- Robert Marzano

At SCSD 1, our goal is that student grades be consistent, accurate, meaningful, and supportive of each student’s learning. When teachers using a traditional grading system are asked to brainstorm factors that may be included in a student’s grade, they list everything from assessments, homework, effort, and behavior. This huge range of factors led us to ask how we could possibly meet our goal using our current assessment and grading practices. Standards-based learning is being implemented in an effort to reach our goal of providing consistent, accurate, and meaningful feedback that supports student’s learning. In addition, SBL addresses the four criteria required of a uniform grading system under accreditation guidelines. The four criteria are:

Accuracy: Basing a student’s grade on assessments of learning, allows the teacher to create a clear picture of what the student has learned without the influence of other, non-academic factors. These other factors, such as effort and behavior, are still essential, but are not part of the student’s academic grade and are communicated separately.

Consistency: For each outcome, the teacher provides a learning scale, or rubric that describes exactly what the student should know or be able to do. The rubrics identify criterion for proficiency and are used consistently throughout the unit and semester.

Meaningful: A meaningful grade is one that clearly communicates the learning that has taken place. In a standards-based classroom, scores are recorded by the learning outcomes rather than by categories, such as tests or homework. This makes it easier to identify areas of strength and areas of growth.

Supportive of Learning: SBL supports student learning by focusing on demonstrated proficiency and providing enrichment and intervention as needed. The reassessment policy supports student learning by allowing new levels of learning to replace old when a student demonstrates improvement on an assessment.
Frequently Asked Questions

General Questions

What are the key ideas of standards-based learning?

In addition to our goal of making grades accurate, consistent, meaningful, and supportive of learning, our implementation of standards-based learning (SBL) is built on five key ideas:

- A student’s grade should reflect academic learning and should never be used as a punitive tool.
- The primary purpose of assessment and grading is to provide detailed feedback to inform student learning.
- Learning is a process that takes place over time and at different speeds for different students.
- Everything that happens in a classroom should support and build on a set of essential outcomes that are identified in advance and shared with students.
- A coordinated assessment and grading system, both among common course teachers and throughout the school, clarifies the expectations for all students and maximizes academic opportunities.

These ideas are the core foundation for SBL. For example, the idea of learning over time is the basis for allowing new evidence of learning to replace old evidence and for implementing our reassessment policy. As we move forward, any proposed changes must support these key ideas and be agreed upon by all of the teachers implementing SBL in order to be put into effect.

How does standards-based learning affect my classroom instruction?

Standards-based grading and reporting has little direct impact on classroom instruction – quality teaching is quality teaching regardless of the grading system being used. What SBL will impact is the focus of classroom instruction and the feedback students receive. By specifying the essential knowledge and skills the students must master, teachers select tasks and activities that will have the most impact on student learning. Each learning task has criterion for mastery that is shared with students in order to pinpoint information about what learning has and has not been demonstrated.

What does the number scale (4, 3.5, 3, 2.5, 2, 1.5, 1, .5 and 0) on the rubric mean?

The scores on the scale represent a learning continuum and are NOT equated to grade point average. Each of the levels builds on the others and explains the learning students have to demonstrate in order to earn that score. Students must demonstrate proficiency as they move up the scale. For example a student may not earn a 3 until they demonstrate proficiency of the level 2 concepts or skills. The scale designations are as follows:

4 – The student demonstrates an in-depth understanding of the material by completing advanced applications of the material.
 - 3.5 – In addition to a 3.0 score, the student demonstrates in-depth inferences and applications with partial success.

3 – The student demonstrates proficiency on the complex, targeted knowledge and skills for the class.
 - 2.5 – In addition to a 2.0 score, the student demonstrates partial knowledge of 3.0 elements.

2 – The student understands the foundational material, but is still working to master application of the concepts and skills
 - 1.5 – The student demonstrates understanding of all 2.0 elements with help and independent understanding of some 2 elements.

1 – The student is able to demonstrate an understanding of all of the foundational material with support
 - 0.5 – The student demonstrates understanding of some 2.0 elements.

0 – Even with assistance from the teacher, the student shows no understanding of the material.
How do I write a rubric?

- Each rubric is built around an essential outcome identified by the common-course teachers in each grade level. The outcomes are designed to align with the standards, skills, and processes in the 2012 Wyoming State Content Standards.

- Teachers begin by identifying the targeted, complex knowledge for the level 3 items. This level is the focus for the entire rubric since it identifies the expected level of performance for all students.

- Once the items at level 3 have been established, teachers identify the foundational skills for the items at level 2. This level identifies the basic learning that is the foundation for the higher levels of learning needed in levels 3 and 4. Examples of this type of learning may include recall questions, fact-based skills, and basic applications.

- The final step in building the rubric is to identify items for level 4. Level 4 requires students to show in-depth understanding and application of skills beyond what is expected at level 3. These items are not just harder tasks, but learning that requires deeper or more rigorous thinking. Examples of this type of learning may include: applications for real-world use, solving problems in a different context, synthesizing information to create something new, or explaining connections between ideas.

- Level 4 is not intended to be an exhaustive list; if a student approaches you with an alternate task, you should work with the student to make sure the task is sufficiently rigorous and then assess the student appropriately.

- Level 3 of a rubric should always be written first, followed by level 2, and then level 4. This approach helps ensure the scaffolding nature of the rubric.

- The items at each level should build upon one another and not overlap.

- The wording of the 4, 3, 2, 1 scores are standardized for all rubrics and should not be modified. For further explanation of these levels, please see the question on page 4, “What does the 4, 3.5, 3, 2.5, 2, 1.5, 1, .5 and 0 on the rubric mean?”

- The rubric should focus on quality work, not quantity. Statements of quantity for an outcome such as “with 80% accuracy” or “identify 3 out of 4” are not appropriate.

- The rubric is a tool for students, parents and teacher, so use clear language and avoid content and educational jargon whenever possible.

- See the sample rubrics starting on page 25 for content-specific examples.

- In this guide, the individual bullet points on the rubric are called items or components.
Standards-Based Learning Rubric Explanation

A rubric is given to the students for each essential outcome covered in a standards-based class. Each of the levels builds on the others and explains what learning the students have to demonstrate in order to earn that score. The students must master each level as they move up the rubric. For example, students cannot earn a 3 until they have shown mastery of level 2.

The wording in bold is used in every rubric given to students. The wording in italics is an explanation of each level.

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes:</th>
</tr>
</thead>
</table>
| 4 | In addition to a level 3 score, the student demonstrates in-depth inferences and applications such as:
- These are not just harder tasks, but learning that requires deeper or more rigorous thinking.
- Examples of this type of learning may include: applications for real-world use, teaching another person the material, using information to solve problems in a different context, explaining connections between ideas, demonstrating a unique insight, and/or creative application of skills. | |
| 3.5 | In addition to a level 3 score, the student demonstrates in-depth inferences and applications with partial success. | |
| 3 | While engaged in grade appropriate tasks, the student demonstrates an ability to:
- This level is the focus for the entire rubric.
- This is the expected level of performance for all students.
- This level includes essential outcomes, state standards, and related skills and processes.
No major errors or omissions with level 2 or 3 elements. | |
| 2.5 | The student demonstrates no major errors or omissions regarding level 2 elements and a partial knowledge of level 3 elements. | |
| 2 | The student demonstrates no major errors or omissions regarding the simpler details and processes such as:
- This level is the basic learning necessary and serves as the foundation for the higher levels of learning.
- Examples of this type of learning may include recall questions, fact-based skills, and basic applications.
- This level does not represent partial understanding of the level 3 elements.
However, there are major errors or omissions with level 3 elements. | |
| 1.5 | The student demonstrates understanding of all level 2 elements with help and independent understanding of some level 2 elements. | |
| 1 | With help, the student demonstrates understanding of all level 2 elements or some level 2 and 3 elements. | |
| 0.5 | The student demonstrates understanding of some level 2 elements. | |
| 0 | Even with help, the student demonstrates no understanding or skill. | |

The bullet points at each level of the rubric are typically referred to as items or components.
How do I discuss SBL with students? With parents?

Parent knowledge can vary considerably, and transfer students and parents may be wholly unfamiliar with SBL. This handbook and the parent guide starting on page 55 will be a valuable resource. Conversations about SBL should focus on district goals and implementation and on how to improve student learning. If you cannot answer a question to a parent or student’s satisfaction, please refer them to an administrator for additional information.

How can students improve their grades?

With a focus on academic learning, SBL removes many of the supports, such as extra credit or completion-based homework that some students relied on to mask weaknesses in their learning. This shift can be especially difficult for students who are normally “A” students because of these factors. However, those supports are replaced with the opportunity for a student to continue learning and be reassessed to improve their score. Under a standards-based system, a student can reassess on previous outcomes to demonstrate a higher level of proficiency. This new evidence replaces the old evidence, and the student’s grade improves. This opportunity is available to any student at any time. Please see the question “How do reassessments work?” on page 10 for more information on the reassessment process.

How do I hold students accountable for their effort and conduct?

In SBL, a student’s effort and behavior are recorded and reported separately from the academic grade. This approach is based on the idea that not completing work is a behavior issue, not an academic one, so your response should address the student’s behavior. For example, if a student has not been completing homework assignments and as a result struggles on an assessment, you should discuss the importance of practice with the student and set goals for future work. You could also require the student to come in during Flex/Eagle Time or stay after school to complete an assignment or have the student work on it while the rest of the class is engaged in a different task. Finally, you need to provide feedback to the student about their work habits by regularly recording homework in the grade book and using the information to support the student’s learning.

How do I motivate students to do homework or classwork when they say “only the tests count”?

The best way to eliminate the misconception that “only the tests count” is to set classroom expectations at the beginning of the semester. To do this, you need to prepare purposeful tasks that are connected to the outcome and respond appropriately with consequences focused on the students’ behavior if they do not complete the work. If you give the perception that the tasks are not important by not enforcing these expectations, the students will respond by not doing the work. Examples of not meeting these expectations would be to give tasks that are either trivial or too difficult, exhaustively discuss homework assignments in class, or to extended deadlines solely because students failed to complete the work. You set the tone for this work, so make sure the message is the correct one.

To be clear, classwork and homework completion are not issues unique to SBL – students will only complete the work they see value in, regardless of the grading system being used. One way to convey that value is to remind students that they are assessed on everything they do. Everything, from class discussions to homework to assessments, informs your decision about the student’s level of proficiency on an outcome, so it is in the student’s best interest to put forth their best effort at all times.
Assessment Questions

What does an effective SBL assessment look like?

There is no “best” way to design a standards-based assessment, but there are several ideas that can help facilitate the assessment process.

- The assessment must align to grade level or course outcomes. An assessment can cover more than one outcome, but it should be clear which parts of the assessment are tied to which outcomes.
- The assessment needs to measure individual proficiency. While group work and collaboration is an important part of the 21st century classroom, only work that can be clearly attributed to an individual student should be used to determine proficiency.
- The assessment must be valid so that it accurately assesses the intended material in a fair and consistent manner. For example, if an assessment is intended to assess students’ ability to analyze a topic but only asked them to recall basic facts about the topic, that assessment is not valid. However, if these items were aligned to level 2 of the rubric and additional items were used to assess levels 3 and 4, the validity of the assessment would be much stronger.
- The rubric should provide the structure for the assessment. Since you will use the assessment to give students feedback on the component-by-component basis, the assessment items need to clearly align to the levels on the rubric.
- The depth of knowledge assessed needs to match the level of instruction and the corresponding outcome. If the outcome asks students to analyze, then the assessment should also be based on analysis tasks. This aspect of assessment requires careful planning - using analysis-level verbs in the task does not guarantee that students are doing analysis-level work.

Using these ideas as a basis, standards-based assessments can take many forms, such as traditional paper-and-pencil tests, extended projects, lab reports, essays, as well as observations, and informal discussions.

Does an assessment have to cover an entire rubric?

No, an assessment does not have to cover an entire rubric. Because of the scaffolding nature of the rubric and the increasing depth of knowledge from level 2 to level 4, different assessment tools will be appropriate at different times. For example, you may decide to assess some recall-based level 2 items through a quick quiz or exit ticket early in a unit, then assess the remaining level 2 and level 3 items through a traditional summative at the end of the unit and follow that with an extended project to assess level 4. This evidence should be recorded on each student’s rubric as it is collected, and all of these assessments need to be complete before a summative score for that standard is entered in the grade book.

How do I use the rubric to provide feedback?

The primary purpose of a standards-based rubric is to inform student learning, so it is a vital tool to use when giving students feedback on their progress. For each bullet point on a rubric, you should be able to point to evidence such as assessments, assigned tasks, or notes from class discussions, which demonstrate whether or not a student is proficient on that item. One way to track proficiency on the rubric is to place a check mark next to each item as it is mastered along with a date and to circle items the student needs to continue working on. You also need to provide specific feedback to guide student’s next steps in the learning process. This information can be written by the relevant items or in the additional notes section of the rubric. As the student’s learning progresses, you can continue to update the information on the rubric or attach a clean copy. Either way, preserving the earlier assessment information is an important part of showing how the student’s mastery has progressed over time.
How do I assign a student a score for an outcome?

There are two aspects that must be considered when assigning a student a score for an outcome; what constitutes proficiency for each element of the rubric and how the rubric is structured. In determining what constitutes proficiency of an item on a rubric, the expectation is not for the student to display perfection, but rather that in looking at a student’s work as a whole, there is sufficient evidence showing the student has demonstrated proficiency of the outcome. The decision is based on common course teachers working together to arrive at a clear, consistent expectation and then using professional judgment to determine when that expectation has been met.

Once the teacher has determined what constitutes proficiency for the items on the rubric, the structure of the rubric determines how a score is assigned. Each level on the rubric has a specific meaning as follows:

4 – The student demonstrates an in-depth understanding of the material by completing advanced applications of the material.
 - 3.5 – In addition to a 3.0 score, the student demonstrates in-depth inferences and applications with partial success.

3 – The student demonstrates proficiency on the complex, targeted knowledge and skills for the class.
 - 2.5 – In addition to a 2.0 score, the student demonstrates partial knowledge of 3.0 elements.

2 – The student understands the foundational material, but is still working to master application of the concepts and skills
 - 1.5 – The student demonstrates understanding of all 2.0 elements with help and independent understanding of some 2 elements.

1 – The student is able to demonstrate an understanding of all of the foundational material with support
 - 0.5 – The student demonstrates understanding of some 2.0 elements.

0 – Even with assistance from the teacher, the student shows no understanding of the material.

Additional points to consider when assigning a score for an outcome:

- Evidence of proficiency can be pulled from any part of a student's work. For example, if a student cannot define a level 2 vocabulary term on an assessment, but uses that term correctly in context in an extended response, the evidence from the extended response can be used to show the student's mastery of the term even though the extended response was not directly assessing the student's knowledge of the term.

- A student cannot receive a score higher than 0.5 until demonstrating proficiency of all the level 2 elements, either with or without support. Once that proficiency has been demonstrated, the amount of support the student needs determines whether the student receives a 1.0, 1.5, or 2.0. Please see the scale above for an explanation of these levels.

- A student must demonstrate proficiency on the lower levels of the rubric prior to receiving scores for proficiency of the higher levels. For example, if a student has demonstrated proficiency of all of the level 3 elements but only partial proficiency at level 2, the assigned score should be 0.5 until proficiency at level 2 has been demonstrated. Once mastery of the level 2 elements has been demonstrated, the student’s score would immediately increase to 3 based on the evidence.

- Proficiency must be demonstrated on all of the elements on a rubric. It is never acceptable to group an entire level of the rubric together when assigning a score. An example of this unacceptable practice would be to require students to answer 80% of the level 3 assessment questions correctly in order to receive a 3. Common course teachers may set 80% success as sufficient evidence for an individual element, or component, on the rubric, but not for an entire level.
How do reassessments work?

After completing an assessment in a standards-based class, the student can ask for a reassessment using the process described below.

1. The student gets a copy of the reassessment agreement (Found on page 37) from you and completes the “Outcomes to Reassess” section to choose what outcomes to be reassessed on and at what levels.
2. The student completes the “Preparation Information” by picking a few activities that would help with relearning the material. The student then arranges a meeting with you to discuss the agreement. You may require specific activities to prepare for the reassessment, such as completing missing assignments. Any activities selected by you or the student must have evidence that it has been completed.
3. Together, you and the student will decide when, where, and how the student will be reassessed in the “Reassessment Information” section.
4. Once all of the relearning activities have been completed, the student will show the necessary evidence to you, and both you and the student will sign the “Reassessment Approval” section of the agreement.
5. The student is now ready to be reassessed as described in the “Reassessment Information” section.

The reassessment agreement supports the student’s learning by:

- Ensuring that relearning takes place before reassessment.
- Identifying the specific steps the student must complete to be reassessed.
- Clarifying the reassessment process for both the student and the teacher.
- Identifying exactly how the student will be reassessed so there are no surprises.

Note that the reassessment agreement does not set any expectations on the format of the reassessment other than requiring the teacher and student to agree on it in advance. Different types of reassessments will be appropriate for different assessments. For example, recall-level knowledge might be reassessed with a verbal assessment or a new version of an assessment, but an essay might be reassessed by conferencing with the student and having the student rewrite the original essay. The teacher can also use this approach as an incentive for students to take the initial assessment seriously – a rigorous reassessment creates more work for the student, which can be avoided by doing well the first time.
What flexibility do I have in assessing a student, such as a student who struggles on an assessment?

The focus in SBL is on the knowledge a student demonstrates through an assessment, not the product itself, so if a student struggles on an assessment, you have the flexibility to assess that student’s knowledge in different ways. For example, if a student has trouble with traditional pencil-and-paper assessments, you could assess that student’s knowledge through a verbal assessment or use evidence from class discussions, performance on assigned tasks or other quick, informal assessments to determine the student’s level of proficiency.

If a student proposes an alternative way to demonstrate advanced, in-depth understanding of an outcome, the teacher should make sure the task is sufficiently rigorous and aligns to the outcome it is intended to measure, then assess the student’s work appropriately.

How many standards does a student need to be assessed on?

In order to be considered for a passing grade, a student must be assessed on at least 80% of the outcomes covered during a semester. This expectation applies to every standards-based class and needs to be a part of your course syllabus. If a student does not meet this 80% requirement, you need to override the course grade in PowerTeacher to an INC until the student completes the necessary assessments. See the “Overriding the Course Grade” section of the PowerTeacher Grade Book Guidelines on page 20 for an explanation of how to override the grade.

Note that the requirement is that a student needs to be assessed on 80% of the outcomes, not complete 80% of the assessments. This difference is important, because if a student misses a summative assessment but you have sufficient evidence from other sources, such as formative assessments, to assign a score for the outcome, you need to do so. However, if there is insufficient evidence to give the student a score for the outcome, the overall outcome average is zero. The 80% expectation should never be used as a punitive tool to use against students – it is intended to guarantee the students have sufficient knowledge to be successful at their next level of learning.
Grade Book Questions

How do I determine a student's final score for an outcome?

Once you have collected sufficient evidence to assign a student a score for an outcome, you need to use your professional judgment to determine the student’s level of proficiency. While this decision should incorporate all of the evidence you have collected, the most recent evidence will generally be the most reliable. For example, one way to approach assigning a score after a summative assessment is to use the score from the summative as the starting point, then look at the other evidence you have to determine if the summative score needs to be adjusted up or down. If there is a large discrepancy between the student’s formative and summative scores, such as jumping from a level 1 to level 4 or vice versa, that signals that you may need to collect additional information. A student’s score for an outcome can be adjusted up and down throughout a semester as additional evidence is collected. If a later assessment shows that a student’s mastery of an outcome may have dropped, you should either collect additional evidence to determine the student’s true level of learning or lower the student’s score if the new evidence is strong enough.

A few additional notes about assigning scores for outcomes:

 You should never average a student’s scores on homework, class assignments and quizzes to determine the final outcome score. Use the most recent evidence and results of the outcome assessment.
 No score on an outcome is final until the end of the semester.
 Any decision to raise or lower a student’s score on an outcome must be based on solid evidence demonstrating why the previous score is no longer valid.
 If you do not have sufficient evidence to assign an outcome score, use the INC or LND score code explained on page 14 as a placeholder as you collect more information.

How do I record grades in Power Teacher?

The process for entering grades is outlined in the PowerTeacher Grade Book Guidelines document found on page 16. All teachers are expected to follow these expectations and ask for clarification if they are not clear. These expectations are in place to ensure consistency across the entire district to allow everyone, including teachers, students, parents, counselors, and administrators, to understand the information they see in the grade book. Administrators will periodically check the teacher grade books and offer assistance to bring any issues in line with district expectations.

What is the grade scale for Standards Based Learning?

At the middle school level, outcome scores on the report card are reflected by the number scale (4, 3.5, 3, 2.5, 2, 1.5, 1 or 0). Each outcome is reported as a separate score and is not averaged together for a final math grade.

At the high school level the number scale (4, 3.5, 3, 2.5, 2, 1.5, 1 or 0) is converted at the end of each semester to a letter grade using the grade scale shown below. Outcome grades are averaged together at the end of the semester to reflect a final letter grade on the report card.

<table>
<thead>
<tr>
<th>This is the number scale score</th>
<th>=</th>
<th>This is the number scale score range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3.4 – 4.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.5 – 3.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.0 – 2.4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.5 – 1.9</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.0 – 1.4</td>
<td></td>
</tr>
</tbody>
</table>
This conversion scale was developed to set clear expectations for student learning. In order to receive credit for a class, a student must, with help, show an understanding all of the Level 1 foundational skills taught. Level 2 shows that the student understands all of the foundational skills without help, and Level 3 requires a student to master all of the complex, targeted knowledge in the class. Level 4 indicates that the student has an in-depth, advanced understanding of the material.

Why is the grade scale for standards-based learning different?

Standards-based grading focuses on measuring students’ mastery of a specific set of outcomes. The grade scale reflects the level of proficiency achieved for each outcome. At the high school level, the number scale grade is translated at the end of each semester into a traditional letter grade to determine a grade point average (GPA) for transcript purposes. In order to translate the number score into a traditional letter grade, we adjusted the cutoffs to reflect the 4, 3, 2, 1, 0 scale. The resulting scale is shown below.

<table>
<thead>
<tr>
<th>This is the number scale grade</th>
<th>=</th>
<th>This is the standards-based grade range</th>
<th>=</th>
<th>This is the letter grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>3.4 – 4.00</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.5 – 3.3</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2.0 – 2.4</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.5 – 1.9</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0.00 – 1.44</td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

At the elementary and middle school levels, outcome scores are never averaged together for a final grade or translated into a letter grade at any time.

One common misconception that arises when moving from traditional percentage grading to standards based grading is that in the past a student only needed to get a 25% percent to pass, and while technically correct, this misconception misses what exactly the 25% percent means. In a traditional grading system, a 25% means that a student answered 25% of the questions correctly. In standards-based learning, this means that a student reached the 1.0 level on the rubric, which is based on the learning the student demonstrated and completely unrelated to how many questions the student answered correctly. This distinction is an important one as the SBL interpretation sets a much higher level of expectation for student learning.

What are EXE, MET, DNM, and NC and when should I use them?

Practice and participation in learning tasks, or homework, can support and enhance your students’ learning, therefore students will be given a variety of relevant and meaningful learning tasks to help them master foundational concepts and apply new skills. Since learning is a process that takes place over time and at different speeds for different students, learning tasks in a standards based learning system will be scored, but not included in the final outcome grade. The purpose of scoring learning tasks is to provide detailed feedback to students and parents about student progress. You will enter the following score codes in the grade book on a weekly basis:

EXE – student performance on the learning task exceeds expectations
MET – student performance on the learning task met expectations
DNM – student performance on the learning task did not meet expectations
NC – student has not completed learning task
What are LND and INC and how are they used?

LND and INC are two custom score codes that may be used in the grade book in place of an outcome score.

- LND stands for “level not determined.” This score is used when there is not enough information to give a student a score for an outcome based on the current assessment evidence. This score may be used when a student struggles with an assessment and you need to follow up to determine if the student can do the work with help, or if the student shows mastery at the 3.0 or 4.0 levels but shows gaps on the 2.0 level. LND’s are temporary scores used while you gather more evidence to give a score. This score is your responsibility to fix and should never be in the grade book for more than two weeks. A LND does not affect the student’s overall grade.

- INC stands for “incomplete.” This score is used when the student has not completed the necessary assessments to be given a grade for an outcome due to absences or other factors. An INC is calculated as a zero in the student’s grade to show the effect of not completing the assessment, however, the student’s numerical score will replace this score once the student completes the necessary assessments. INC’s are the student’s responsibility to fix, and any INC’s left in a student’s grades at the end of the semester will become zeros.

For information on how to create the LND and INC score codes, see page 21-24 in this handbook.

How do I get help with my grade book?

If you need additional assistance with your grade book, please check with your common course teachers or building administrator. You can also check the PowerTeacher Grade Book Guidelines on page 16 of this handbook. Administrators will be checking the grade books periodically and providing support as necessary.
Documents

- PowerTeacher Grade Book Guidelines
- Rubric Examples
- Reassessment Agreement
PowerTeacher Grade Book Guidelines

The following information describes the process of entering scores and determining a student’s overall grade in your class. Initial training will take place at the start of school, and everyone’s grade book needs to be ready by September 4th. If any of these steps are not clear, please get additional support immediately from your building administrator.

Creating and entering daily assignments

When entering daily assignments or learning tasks, you must use one of the following: EXE, MET, DNM OR NC. You can use the green checkmark to indicate the assignment has been collected, but that green checkmark must become one of the custom score codes listed previously.

You should check the “Include in Final Grade” box for all daily assignments. The reason for checking this box is so that the assignment and its custom score will be visible to parents. You can set this box to be unchecked automatically for all newly created assignment by double clicking on the category name in the lower left window of the grade book, unchecking the box in the Edit Assignment Category clicking OK.
Creating Formative and Summative Assessments

Middle School: When you create assessments in the grade book, they should be entered as 0 points, with up to 4 extra points possible. If an assessment covers more than one outcome, one assessment entry should be created for each outcome.

The assessment title must indicate what standard is being assessed. For example, "Measurement Assessment" would be appropriate, but "Chapter 3 Test" would not. Use the description box to indicate the level of knowledge of the assessment targets, and other information you would like parents to see.

To align an outcome to an assessment, click on the standards tab, shown to the left, then check the box for the appropriate outcome. Again, any assessment that covers multiple outcomes needs one entry for each outcome.

With formative and summative assessments, the "Include in Final Grade" box should be checked.

High School: When you create assessments in the gradebook, they should be entered as 4 points possible and they should count in the final grade. The assessment title should indicate what outcome is being assessed. For example, "Measurement Assessment" would be appropriate, but "Chapter 3 Test" would not. Use the description box to indicate the level of knowledge of the assessment targets, and other information you would like parents to see.
Entering Scores for Assessments and Standards

Enter the students’ scores out of the points possible in the assessment column. Use INC for students who have not completed the assessment and LND for students when you need to collect additional evidence before assigning a score. INCs are calculated into the student’s outcome score as a zero, and should remain in the grade book until the student completes the missing assessments. If a student receives an INC, please see page eleven for information about whether or not to override the student’s grade.

LNDs are temporary scores that indicate it is the teacher’s responsibility to get additional information about a student’s level of learning and do not affect a student’s outcome score. LNDs should only remain in the grade book for a maximum of two weeks. Even if the teacher has not collected the necessary information after two weeks, a score needs to be assigned based on the available evidence. The INC and LND scores are custom scores you need to create if you haven’t already – to add LND and INC to the list, go to Gradebook Preferences, click on Score Codes and add them to the existing list.

The view for outcome assessments in the gradebook consists of 2 columns: the assignment column and the outcome score column (you have to click on the small S in the assignment column heading to expand the outcome score column). **IMPORTANT:** the scores in these 2 columns must match. The gradebook automatically copies the initial score in the assignment column into the outcome score column, but if you make later changes to the assignment column score, the change is not always transferred over to the outcome score column. The easiest way to transfer the grades is to right click on the assessment heading to open the menu shown on the left, click on copy score, then right click on the heading of the outcome column and click on paste scores. This will copy all of the scores over, with INCs copying as zeros, and LNDs copying as blank entries.
If appropriate, you can enter a score of INC or LND (Incomplete or Level Not Determined) by right-clicking in the score area and choosing that score from the list of available scores.
Assigning Outcome Grades

Once you have entered outcome scores from an assessment, you need to verify that the correct score is showing up in the final score row of the student view. The grade book is set to automatically assign the highest score as the final score, but as with applying any single calculation to every student, the mode is not always the most accurate reflection of student learning. For example, if a student has been reassessed on a standard and earned a 1, 1, and 4, the mode is 1, which is what would show in the final score row when the student is actually at a 4.

Any time you enter outcome scores, you need to go through and verify the scores in the final score row of your grade book for all of your students. If necessary, override the score by typing in a new score, as shown by the exclamation point in the Properties column to the left. Please note that when you override a grade, it will not automatically update again unless you right click on the score and select “Revert to Grade book Calculation.” If a student does not have enough evidence to assign an outcome score, select INC or LND.

****This verification is one of the most important steps in assigning standards-based grades. The information in the Final Score row is pulled by PowerSchool for the standards-based report cards, is viewed by parents in the Parent Portal, and is averaged at the high school level to determine the overall course grade. If this row is not correct, almost every aspect of your grade book will be incorrect and bad information will go out to teachers, students, and parents. You need to check this row whenever you add new standard scores to your grade book.****

If you have any questions about structuring your grade book to meet any of these guidelines, or to get the Parent View to look like this example, please get additional support from your administrator.
To Create a “Level Not Determined (LND)” grade in PowerSchool

Under “Tools,” click on “Preferences.”

Click on the “Score Codes” tab and then on “Add.”
In the box that opens, enter “LND” in the Code box, and “Level Not Determined” in the description box. Do not change any of the other settings in this box.

Click on OK to accept the changes. You should now see the new score code.

You can now enter “LND” for any outcome assessment in the grade book. Note that this score also exempts the student from the assessment, so it will not affect the overall grade.
To Create an “INC” Custom Score in PowerSchool

Under “Tools,” click on “Preferences”

Click on the “Score Codes” tab and then on “Add.”
In the box that opens, enter “INC” in the Code box, and “Incomplete Outcome” in the description box. Next, uncheck the box next to Exempt. This will allow you to enter 0 for the percent and change the dropdown box next to Numeric to Minimum. The box should look like the screenshot below.

Click on OK to accept the changes. You should now see the new score code.
Class: Algebra 1
Unit 2A: Solving Linear Equations
Essential Outcome: The student will be able to solve linear equations in one variable.

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes:</th>
</tr>
</thead>
</table>
| 4 | In addition to a 3.0 score, the student demonstrates in-depth inferences and applications, such as:
 | Write and solve an equation to model real world situations (either on a test or get the problem ahead of time)
 | Analyze the steps shown to solve an equation and describe the mistakes that were made
 | Solve complex equations in a new context
 | Find percent of change | In addition to 3.0, the student demonstrates in-depth inferences and applications with partial success. |
| 3.5 | In addition to 3.0, the student demonstrates in-depth inferences and applications with partial success. |
| 3 | While engaged in grade appropriate tasks, the student demonstrates an ability to:
 | Solve two-step and multi-step linear equations (including equations involving the distributive property and equations with variables on both sides)
 | Solve problems involving percents
 | Solve absolute value equations | No major errors or omissions with 2.0 or 3.0 elements. |
| 2.5 | The student demonstrates no major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements. |
| 2 | The student demonstrates no major errors or omissions regarding the simpler details and processes such as:
 | Recall inverse operations
 | Use inverse operations to solve one-step equations
<pre><code> | Determine whether a given value is a solution to an equation | However, there are major errors or omissions with 3.0 elements. |
</code></pre>
<p>| 1.5 | The student demonstrates understanding of all 2.0 elements with help and independent understanding of some 2.0 elements. |
| 1 | With help, the student demonstrates understanding of all 2.0 elements or some 2.0 and 3.0 elements. |
| 0.5 | The student demonstrates understanding of some 2.0 elements. |
| 0 | Even with help, the student demonstrates no understanding or skill. |</p>
<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>In addition to a 3.0 score, the student demonstrates in-depth inferences and applications that go beyond what is taught such as:
• Complete a proof showing what type of quadrilateral a figure is.
• Create a Venn diagram to represent all of the types of quadrilaterals.
• Completing more challenging problems determining the angle measures or side lengths of various quadrilaterals while explaining the process used.</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>In addition to 3.0, the student demonstrates in-depth inferences and applications with partial success.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>While engaged in grade appropriate tasks, the student demonstrates an ability to:
1. Calculate the sum of the angles a given polygon & find a missing angle measure (interior or exterior).
2. Comparing and contrasting the different types of quadrilaterals and determining what type of quadrilateral a given figure is.
3. Calculating missing side lengths, angle measures, and diagonal lengths in quadrilaterals.
4. Apply properties of the midsegment of a trapezoid to find missing values.</td>
<td>No major errors or omissions with 2.0 or 3.0 elements.</td>
</tr>
<tr>
<td>2.5</td>
<td>The student demonstrates no major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The student demonstrates no major errors or omissions regarding the simpler details and processes such as:
• Recognize and recall specific terminology (polygon, pentagon, hexagon, heptagon, octagon, convex, interior and exterior angles, concave, equilateral, equiangular, regular(1), quadrilateral, parallelogram, rhombus, rectangle, square, trapezoid and kites(2) diagonal(3), , bases, legs, base angles, midsegment of a trapezoid, isosceles trapezoid(4).
• Determine what type of polygon a given shape is (convex or concave, regular, equiangular, equilateral) and identify it by its number of sides (1).
• Recognize and recall the accuracy of basic solutions and information (polygon interior angles sum, polygon exterior angles sum (1), opposite sides and angles of a parallelogram are congruent, consecutive angles of a parallelogram are supplementary, properties of quadrilateral family (2).)
However, there are major errors or omissions with 3.0 elements.</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>The student demonstrates understanding of all 2.0 elements with help and independent understanding of some 2.0 elements.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>With help, the student demonstrates understanding of all 2.0 elements or some 2.0 and 3.0 elements.</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>The student demonstrates understanding of some 2.0 elements.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Even with help, the student demonstrates no understanding or skill.</td>
<td></td>
</tr>
</tbody>
</table>
Class: Chemistry I
Unit: Chemical Reactions

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes:</th>
</tr>
</thead>
</table>
| 4 | In addition to a 3.0 score, the student demonstrates in-depth inferences and applications such as:
- Synthesize net ionic equations and predict formation of precipitate.
- Synthesize balanced oxidation-reduction (redox) reactions (predict products and show transfer of electrons). | |
| 3.5 | In addition to a 3.0 score, the student demonstrates in-depth inferences and applications with partial success. | |
| 3 | While engaged in grade appropriate tasks, the student demonstrates an ability to:
- Predict the products of a reaction given the reactants.
No major errors or omissions with 2.0 or 3.0 elements. | |
| 2.5 | The student demonstrates no major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements. | |
| 2 | The student demonstrates no major errors or omissions regarding the simpler details and processes such as:
- Differentiate between: combination reaction, decomposition reaction, single-replacement reaction, double-replacement reaction, combustion reaction, neutralization reaction, redox reactions.
- Identify product and reactants.
- Recognize and recall the following terms: coefficient, balanced equation, Moles, chemical equation, skeleton equation, physical change, Law of Conservation of Mass, precipitate.
However, there are major errors or omissions with 3.0 elements. | |
| 1.5 | The student demonstrates understanding of all 2.0 elements with help and independent understanding of some 2.0 elements. | |
| 1 | With help, the student demonstrates understanding of all 2.0 elements or some 2.0 and 3.0 elements. | |
| 0.5 | The student demonstrates understanding of some 2.0 elements. | |
| 0 | Even with help, the student demonstrates no understanding or skill. | |
Class: Biology
Unit: Mendelian Genetics (3.3.E)
Objective: The pattern of inheritance for many traits can be predicted by using the principals of Mendelian Genetics

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes</th>
</tr>
</thead>
</table>
| 4 | In addition to a 3.0 score, the student demonstrates in-depth inferences and applications such as:
A. Design, construct and solve complex genetic problems by using the skills below
B. Solve genetic problems by tracing genotypes back to hereditary origins
C. Complete genetic problems using multiple traits and inheritance patterns |
| 3.5 | In addition to 3.0, the student demonstrates in-depth inferences and applications with partial success. |

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes</th>
</tr>
</thead>
</table>
| 3 | While engaged in grade appropriate tasks, the student demonstrates an ability to:
A. Determine and explain how genotypes (heterozygous/homozygous) contribute to phenotypic variation within a species
B. Determine the probability of the occurrence of specific traits, including sex-linked traits, in off-spring using a monohybrid cross
C. Determine possible allele combinations due to independent assortment.
D. Analyze the results of a karyotype to determine possible genetic disorders |
| 2.5 | The student demonstrates no major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements. |

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes</th>
</tr>
</thead>
</table>
| 2 | The student demonstrates no major errors or omissions regarding the simpler details and processes such as:
A. Recognize and recall specific terminology such as:
-homozygous -heterozygous
-phenotype -genotype
- allele - independent assortment
B. Recognize and recall isolated details such as:
-completing a Punnet square -traits are inherited
-sex-linked traits -how to use a karyotype |
| 1.5 | The student demonstrates partial knowledge of 2.0 elements and but major errors or omissions of 3.0 knowledge. |

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>With help, the student demonstrates a partial understanding of some of the score 2.0 elements and some of the 3.0 elements.</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>With help, the student demonstrates a partial understanding of some of the 2.0 elements, but not the 3.0 elements.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Even with help, the student demonstrates no understanding or skill.</td>
<td></td>
</tr>
</tbody>
</table>
Course: English I and English II **Unit:** Short Stories

Essential Outcome Reading Literature 2 Theme (RL.9-10.-2)

Determine central ideas or themes of a text and analyze their development; summarize key supporting details and ideas.

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes:</th>
</tr>
</thead>
</table>
| 4 | In addition to a 3.0 score, the student demonstrates in-depth inferences and applications such as:
• Determining two or more central ideas or a themes in a text, analyzing in detail how it emerges, is shaped, and is refined by specific details | |
| 3.5 | In addition to 3.0, the student demonstrates in-depth inferences and applications with partial success. | |
| 3 | While engaged in grade appropriate tasks, the student demonstrates an ability to:
• Provide an objective summary of the text, which incorporates the theme.
• Determine a theme or central idea of a text, analyzing in detail how it emerges, is shaped, and is refined by specific details.

No major errors or omissions with 2.0 or 3.0 elements. | |
| 2.5 | The student demonstrates no major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements. | |
| 2 | The student demonstrates no major errors or omissions regarding the simpler details and processes such as:
• Defining theme, setting, paraphrase, and summary
• Identifying the theme as it is developed by characters’ relationships, the setting, and plot

However, there are major errors or omissions with 3.0 elements. | |
1.5	The student demonstrates understanding of all 2.0 elements with help and independent understanding of some 2.0 elements.	
1	With help, the student demonstrates a partial understanding of some of the 2.0 elements and some of the 3.0 elements.	
0.5	The student demonstrates understanding of some 2.0 elements.	
0	Even with help, the student demonstrates no understanding or skill.	
Essential Outcome Speaking and Listening 4 Presentation (SL.9-10.4):
Present information, findings, and supporting evidence clearly, concisely, and logically such that listeners can follow the line of reasoning and the organization, development, substance, and style are appropriate to purpose, audience, and task.

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes:</th>
</tr>
</thead>
</table>
| 4 | In addition to a 3.0 score, the student demonstrates in-depth inferences and applications such as:
- Information presented conveys a clear and distinct perspective.
- Alternative or opposing perspectives are addressed.
- Information is presented clearly.
- Presentation is easy for listeners to follow.
- Presentation is logically organized.
- Presentation includes substantial content.
- Presentation style is appropriate to the purpose, audience, and task. | |
| 3.5 | In addition to 3.0, the student demonstrates in-depth inferences and applications with partial success. | |
| 3 | While engaged in grade appropriate tasks, the student demonstrates an ability to:
- Information is presented clearly.
- Presentation is easy for listeners to follow.
- Presentation is logically organized.
- Presentation includes substantial content.
- Presentation style is appropriate to the purpose, audience, and task. | No major errors or omissions with 2.0 or 3.0 elements. |
| 2.5 | The student demonstrates no major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements. | |
| 2 | The student demonstrates no major errors or omissions regarding the simpler details and processes such as:
- Information is presented clearly.
- Presentation is easy for listeners to follow.
- Presentation is logically organized.
- Presentation includes substantial content.
- Presentation style is appropriate to the purpose. | However, there are major errors or omissions with 3.0 elements. |
<p>| 1.5 | The student demonstrates understanding of all 2.0 elements with help and independent understanding of some 2.0 elements. | |
| 1 | With help, the student demonstrates a partial understanding of some of the 2.0 elements and some of the 3.0 elements. | |
| 0.5 | The student demonstrates some understanding of the 2.0 elements. | |
| 0 | Even with help, the student demonstrates no understanding or skill. | |</p>
<table>
<thead>
<tr>
<th>Score</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| 4 | In addition to a 3.0 score, the student demonstrates in-depth inferences and applications such as:
 - Analyzing primary source documents and making connections between the 1920s and today.
 - Comparing the impact of significant individuals of the 1920s with those of the modern era. |
| 3.5 | In addition to 3.0, in-depth inferences and applications were partially correct. |
| 3 | While engaged in grade appropriate tasks, the student demonstrates an ability to:
 1. Describe how the booming economy of the 1920s led to changes in American life.
 - What factors led to the growth of American consumerism?
 - How did the use of credit and buying on margin create a false sense of prosperity?
 - How did the automobile and the development of the suburbs impact American society?
 2. Describe how changing values and customs during the 1920s led to cultural conflicts.
 - How did mass media, movies and spectator sports impact American society?
 - What were the causes and results of the changing roles of women?
 - How did American society change as a result of the Harlem Renaissance?
 - What led to the rise of nativism and racism and how did it impact society?
 - How did the 18th Amendment lead to the development of organized crime?
 - How did the Scopes Trial reflect the conflicts taking place in American society?
 - How did the Sacco and Vanzetti case reflect the tensions in American society?
 - How did the contributions of famous individuals contribute to the development of the idea of the “Roaring Twenties”?
 No major errors or omissions with 2.0 or 3.0 elements. |
| 2.5 | No major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements. |
| 2 | No major errors or omissions regarding the simpler details and processes such as defining:
 - Consumerism (1)
 - Credit (1)
 - Stock market (1)
 - Bull market (1)
 - Buying on margin (1)
 - Speculation (1)
 - 19th Amendment (2)
 - Prohibition (18th and 21st Amendment) (2)
 - Flapper (2)
 - Harlem Renaissance (2)
 - Scopes Trial (2)
 - Sacco and Vanzetti (2)
 No major errors or omissions in response to the following:
 - Identify how buying on credit led to the growth of the economy.
 - Explain how buying on margin enabled more people to invest in the stock market.
 - Identify new industries created by the mass production of the automobile.
 - Identify new forms of mass media (radio, advertising, movies).
 - Explain the factors leading to prohibition.
 - Identify the contributions of famous individuals.
 - Explain why the 1920s became known as the “Roaring Twenties.” |
| 1.5 | The student demonstrates understanding of all 2.0 elements with help and has an independent understanding of some 3.0 elements. |
| 1 | With help, the student demonstrates understanding of all 2.0 elements or some 2.0 and 3.0 elements. |
| .5 | The student demonstrates understanding of some 2.0 elements. |
| 0 | Even with help, the student demonstrates no understanding or skill. |
Government
Wyoming State and Local

Essential Outcome: The student will explain the structure of Wyoming state and local government.

<table>
<thead>
<tr>
<th>Score</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| 4 | In addition to a 3.0 score, in-depth inferences and applications that go beyond what is taught such as:
- Debate the strengths and/or weakness of the structure of Wyoming Government compared to the structure of the U.S. Government. |
| 3.5 | In addition to 3.0, in-depth inferences and applications were partially correct. |
| 3 | While engaged in grade appropriate tasks, the student demonstrates an ability to:
 (A) Describe the structure and function of the Wyoming Legislative Branch
 (B) Describe the structure and function of the Wyoming Executive Branch
 (C) Describe the structure and function of the Wyoming Judicial Branch
 (D) Explain how local government is structured throughout the U.S.
 No major errors or omissions with 2.0 or 3.0 elements. |
| 2.5 | No major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements. |
| 2 | No major errors or omissions regarding the simpler details and processes such as defining:
- (A) General Assembly
 (A) Initiative
 (A) Referendum
- (B) Merit System
 (B) Secretary of State
 (B) Attorney General
 (B) Treasurer
 (B) Auditor
 Perform basic processes like:
 - (A) Identify the qualifications to be a Wyoming state senator and representative
 - (A) Identify the length of term and term limits for Wyoming state senators and representatives.
 - (B) Identify the qualifications to be governor of Wyoming
 - (B) Identify the length of term and term limit for the governor of Wyoming
 - (B) Identify the powers of the governor of Wyoming
 - (C) Identify the types of court cases in Wyoming’s jurisdiction
 - (C) Describe the structure of Wyoming’s court system
 - (C) Describe the process of the Wyoming non-partisan court plan (Missouri Plan)
 - (D) Explain the types of local governments (township, town, county, special district)
 - (D) Contrast the major forms of city government
 - (D) Identify the structure of your city government
 No major errors or omissions regarding the simpler details and processes such as defining:
- (A) General Assembly
 (A) Initiative
 (A) Referendum
- (B) Merit System
 (B) Secretary of State
 (B) Attorney General
 (B) Treasurer
 (B) Auditor
 Perform basic processes like:
 - (A) Identify the qualifications to be a Wyoming state senator and representative
 - (A) Identify the length of term and term limits for Wyoming state senators and representatives.
 - (B) Identify the qualifications to be governor of Wyoming
 - (B) Identify the length of term and term limit for the governor of Wyoming
 - (B) Identify the powers of the governor of Wyoming
 - (C) Identify the types of court cases in Wyoming’s jurisdiction
 - (C) Describe the structure of Wyoming’s court system
 - (C) Describe the process of the Wyoming non-partisan court plan (Missouri Plan)
 - (D) Explain the types of local governments (township, town, county, special district)
 - (D) Contrast the major forms of city government
 - (D) Identify the structure of your city government
 1.5 The student demonstrates understanding of all 2.0 elements with help and independent understanding of some 2.0 elements. |
| 1 | With help, a partial understanding of some of the score 2.0 elements and some of the score of 3.0 elements. |
| 0.5 | With help, a partial understanding of some of the 2.0 elements, but not the 3.0 elements. |
| 0 | Even with help, the student demonstrates no understanding or skill. |
Class: Spanish I

Objective: #3 – The student will be able to construct sentences using regular –ar, -er, and –ir verbs in the present tense.

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>In addition to a 3.0 score, the student demonstrates in-depth inferences and applications such as:</td>
<td>Additional Notes:</td>
</tr>
<tr>
<td></td>
<td>• Seeking out and applying additional regular verbs to his/her vocabulary</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>In addition to 3.0, the student demonstrates in-depth inferences and applications with partial success.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>While engaged in grade appropriate tasks, the student demonstrates an ability to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Construct sentences using regular verbs in the present tense</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o –ar verbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o –er and –ir verbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No major errors or omissions with 2.0 or 3.0 elements.</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>The student demonstrates no major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The student demonstrates no major errors or omissions regarding the simpler details and processes such as:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Identify subject pronouns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Given a verb and a subject pronoun, conjugate the verb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Recall listed vocabulary words</td>
<td></td>
</tr>
<tr>
<td></td>
<td>However, there are major errors or omissions with 3.0 elements.</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>The student demonstrates partial knowledge of 2.0 elements and but major errors or omissions of 3.0 knowledge.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>With help, the student demonstrates understanding of all 2.0 elements or some 2.0 and 3.0 elements.</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>The student demonstrates understanding of some 2.0 elements.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Even with help, the student demonstrates no understanding or skill.</td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td>Description</td>
<td>Student Notes:</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 4 | In addition to a 3.0 score, the student demonstrates in-depth inferences and applications such as:
 - Re-creates multiple dark, medium and light values with smooth and seamless transitions, and accurate textures. | | |
| 3.5 | *In addition to 3.0, the student demonstrates in-depth inferences and applications with partial success.* | | |
| 3 | While engaged in grade appropriate tasks, the student demonstrates an ability to:
 - Re-creates *multiple* dark, medium, and light values that reflect the subject matter.
 No major errors or omissions with 2.0 or 3.0 elements. | | |
| 2.5 | The student demonstrates no major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements. | | |
| 2 | The student demonstrates no major errors or omissions regarding the simpler details and processes such as:
 - Re-creates a dark, medium, and light value that reflects the subject matter.
 - Creates a value scale or sampler demonstrating the ability to create variations basic of values of a given medium.
 - Recognizes the difference between various values in real life observation and in 2 Dimensional images.
 However, there are major errors or omissions with 3.0 elements. | | |
| 1.5 | The student demonstrates understanding of all 2.0 elements with help and independent understanding of some 2.0 elements. | | |
| 1 | With help, the student demonstrates understanding of all 2.0 elements or some 2.0 and 3.0 elements. | | |
| 0.5 | The student demonstrates understanding of some 2.0 elements. | | |
| 0 | Even with help, the student demonstrates no understanding or skill. | | |
Nutrition & Wellness I: Nutrition Tools

Analyze Sources of food and nutrition information, including food labels and MyPlate, related to health and wellness.

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes:</th>
</tr>
</thead>
</table>
| 4 | In addition to a 3.0 score, the student demonstrates in-depth inferences and applications that go beyond what is taught such as:
- When given a real-life scenario, analyze various health issues and utilize nutrition tools to diagnose and address problems associated with poor nutrition. | |
| 3.5 | In addition to 3.0, the student demonstrates in-depth inferences and applications with partial success. | |
| 3 | While engaged in grade appropriate tasks, the student demonstrates an ability to:
- Identify basic serving sizes for various foods.
- Calculate basic caloric needs based on body size and activity level.
- Describe MyPlate and its recommendations.
- Describe a food label, its contents, and how to use it.
No major errors or omissions with 2.0 or 3.0 elements. | |
| 2.5 | The student demonstrates no major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements. | |
| 2 | The student demonstrates no major errors or omissions regarding the simpler details and processes such as:
- **Key vocabulary:** Body Mass Index (BMI), obese, combination food, empty calorie food, discretionary calorie, body composition, body image, energy balance, fad diet, growth spur
- Determine if a food is nutrient rich and/or calorie dense.
However, there are major errors or omissions with 3.0 elements. | |
<p>| 1.5 | The student demonstrates partial knowledge of 2.0 elements and but major errors or omissions of 3.0 knowledge. | |
| 1 | With help, the student demonstrates a partial understanding of some of the score 2.0 elements and some of the score of 3.0 elements. | |
| 0.5 | With help, the student demonstrates a partial understanding of some of the 2.0 elements, but not the 3.0 elements. | |
| 0 | Even with help, the student demonstrates no understanding or skill. | |</p>
<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>In addition to a 3.0 score, the student demonstrates in-depth inferences and applications such as:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pretend you have $10,000 to invest. Construct a specific 12-month investment plan that includes evaluations on risks versus rewards with an estimated ending balance/rate of return.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Write an essay that examines how the 21st Century Act improved the United States economy. Use specific examples and research that illustrate its effectiveness.</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>In addition to a 3.0 score, the student demonstrates in-depth inferences and applications with partial success.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>While engaged in grade appropriate tasks, the student demonstrates an ability to:</td>
<td>No major errors or omissions with 2.0 or 3.0 elements.</td>
</tr>
<tr>
<td></td>
<td>• Evaluate checking account services available to customers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Produce a balanced check register</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Identify methods of saving money</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Critique applications of savings and investing</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>The student demonstrates no major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The student demonstrates no major errors or omissions regarding the simpler details and processes such as:</td>
<td>However, there are major errors or omissions with 3.0 elements.</td>
</tr>
<tr>
<td></td>
<td>• List savings and checking services that banks offer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Write a check</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Define key terms for banking services</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• List types of savings programs (savings accounts, CDs, investments, etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Define 21st Century Act</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>The student demonstrates understanding of all 2.0 elements with help and independent understanding of some 2.0 elements.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>With help, the student demonstrates understanding of all 2.0 elements or some 2.0 and 3.0 elements.</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>The student demonstrates understanding of some 2.0 elements.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Even with help, the student demonstrates no understanding or skill.</td>
<td></td>
</tr>
</tbody>
</table>
SCSD #1 Reassessment Agreement

Name: ______________________________________ Class: ___________________ Hour: _____

Outcomes to Reassess (to be completed by the student)
I would like to be reassessed on the following outcomes at the indicated levels. (Circle all that apply.)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preparation Information (to be completed by the student with teacher input)
Before my reassessment, I will complete the following activities to prepare:

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity*</th>
<th>Evidence of Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Use the list of ideas on back of this page if necessary. Your teacher may require specific activities.

Reassessment Information (to be completed by the student and teacher together)
Date: ____________________ Time: ______________ Location: ____________________________

Reassessment Method (to be determined by teacher):
☐ Written response ☐ Verbal assessment ☐ Revised form ☐ Same form ☐ Other (please describe):

Student Signature Teacher Signature

Reassessment Approval
I have completed all of the necessary activities and am now ready to be reassessed.

Student Signature Teacher Signature Date

Reassessment Guidelines
- The student must complete all the activities and provide evidence of learning in order to be allowed to complete the reassessment.
- If a student is unable to take the reassessment due to missing evidence or failure to show up, the student will be allowed to reschedule the reassessment once.
- No reassessments will be allowed during the final week of a quarter or semester.
- The reassessment score will be recorded in the grade book and used to help determine the student’s grade for the outcome. Completing a reassessment does not guarantee that the student’s grade will increase.
Reassessment Study Activities

Select from the activities below to complete the “Preparation Information” section of the reassessment agreement. You can also check with your teacher to see if there are any particular activities that are recommended. If you need any additional explanation or information about any of these ideas, please see your teacher.

Sample Activities
- Complete missing assignments
- Make flashcards
- Create practice assessment
- Tutoring with a teacher
- Study your notes – 30 minute minimum
- Complete internet activities provided by your teacher
- Design a review game
- Make a poster explaining a topic or process
- Create a web diagram
- Write a summary for each of the individual topics in the rubric
- Complete review exercises in the textbook

Possible Evidence of Completion
- Completed assignments
- Completed flashcards
- Completed practice assessment with answer key
- Signed note documenting tutoring time
- Study log
- Screenshots showing completion
- Completed game
- Completed poster
- Completed diagram
- Completed summaries
- Completed exercises

Other activities provided by your teacher:

Additional Notes
Supporting Resources

- Internet Resources
 - “The Case Against the Zero” by Douglas Reeves
 - “Homework: How We Assign and Mark It” by Rick Wormald
 - “Seven Reasons for Standards-Based Grading” by Patricia L. Scriffiny
 - “Reforming Grading Practices in Secondary Schools” by Ken O’Connor
 - “Grading to Communicate” by Tony Winger

- Parent Guide
Internet Resources

Videos
- Rick Wormelii: Redos, Retakes, and Do-Overs: Part One - http://goo.gl/tUE07

Websites
- “Ask the Grade Doctor” by Ken O’Connor – www.oconnorgrading.com/ask.php
- #sbgchat on Twitter - https://twitter.com/search?q=%23sbgchat
Homework: How We Assign and Mark It

Rick Wormeli
January 2009

I'm embarrassed to share this, but this actually happened in my classroom: A student came up to me and said that he didn't understand the topic I just taught. Admittedly, the lesson had not gone well, but I was very tired and had several students in front of him waiting for my responses to their questions. In a less than inspired act, I tossed the interrupting student a figurative pacifier: “Do the homework assignment. It'll be made clear to you.”

Wow, that was not the thing to do. I was trying to compensate for bad teaching through the homework assignment. The student shuffled back to his seat feeling just as much a failure as he was prior to going for help – maybe more so because my response removed all doubt that he was on his own.

Homework is never given to students so they can learn the material the first time around. Solid learning should be achieved before the first homework assignment is uttered. Homework is given in order for students to practice, reinforce, and extend what they already know.

Think about that for minute. If we accept this premise, then we never give homework assignments unless we have evidence that students understand the material. Too often, however, teachers use vicarious assessments of one or two students to assess everyone in the class:
Teacher: Before getting started on the homework today, let's see if you remember everything. Jerel, give an example of the commutative property, please.
Jerel: 9 x 5 = 5 x 9.
Teacher: Excellent. Wanda, how about an example of the distributive property?
Wanda: 4(2 + 3) = (4 x 2) + (4 x 3) = 20.
Teacher: Great! Okay, you all seem to have this so everyone get busy with problems 1-30 on page 65.

'Not so fast. We need physical evidence from every student, not just two students. This can take many forms, including exit cards, personal interviews, sample problems completed, and quick summarizations. We need to know that every student who practices the material understands the material correctly. Why? Because practice makes permanent. It may or may not make perfect.

If students practice content and skills incorrectly, it takes ten times the emotional and intellectual energy to go back and un-do that learning, and re-teach it correctly. If students are struggling or have only learned partially, it's wiser to cancel or significantly alter the homework for that evening, and re-teach the information the next day, then let them do our assigned practice. We monitor the whole class, including sub-sets of students within the room, and we give different assignments to different subsets, if necessary. What is fair isn't always equal in instruction, and it's the same for homework assignments. If some students don't have homework tonight while the rest of the class does, that's fine. We'll assign them homework to practice today's material after we've had a chance to re-teach them tomorrow, and the rest of the class won't have that assignment – the homework load was shifted by one day, but the learning is solid as a result. In a properly run, differentiated classroom, it is rare that everyone gets the same homework assignment.

Sidebar: It wouldn't make sense to say, 'Keep practicing until you understand' because practicing doesn't create understanding – just as giving kids a deadline doesn't teach time management skills.“ – Kohn p. 107

In addition to the idea that homework is practice of what is already known, there are eleven other homework mindsets, creating a full dozen, that lead to student success. Second of these dozen, homework should advance our subjects, not be just decorative or clerical. For example, some teachers ask students to get forms signed, cover their textbooks, or bring in a box of tissues for the classroom as homework assignments. These are very appropriate requests, but they should never be a part of a homework grade. What does bringing in a box of tissues have to do with learning square roots? Nothing. Homework should reflect practice or engagement with the material being studied.

Similar to this are art (or technology or performance) assignments that don’t really advance students learning of the intended topic. When my son, Ryan, was in middle school, his teacher asked students to make a diorama and a travel brochure regarding a book they were reading. It took him three weeks of cutting, gluing, coloring, and re-cutting and re-gluing to make a scene from the book and a travel brochure recommending readers “tour” the book. When asked what the teachers were studying with this novel, his teacher said, “Character development and literary devices.” Nowhere in the diorama or on the brochure did students interact with their learning of character development and literary devices. Ryan is not skilled in art. It was an endurance test for both him and us, his parents, and it bred resentment from the whole family. It did not advance Ryan’s learning about character development or literary devices.

While there are some art, technology, and performance integrations that are very effective ways to process and assess learning, teachers should be careful and ask themselves: 1) How does this assignment create substantive interactions with the
topic?, and 2) Is this assignment going to be effective for each of my students? If the format of the homework assignment is not going to advance the student’s learning, it should be replaced by one that does.

Third, if a student goes home and asks, “Mom, I’m supposed to do a report on phytoplankton. Can you tell me how to start?” we haven’t prepared that student well enough. Homework should be done by students, not students and their parents. If students are not autonomous regarding the assignment, they’re not ready to do the assignment. Do we occasionally have busy days in which we didn’t prepare students for the assignment properly, and they need parental assistance? Sure, but it shouldn’t be the norm.

Students need daily exercise for their minds to function. The fourth homework mindset is to assign physical exercise or sports as homework in content subjects. And, if hours of homework are cutting into students’ exercise time after school hours, change the homework assignments so that they don’t. Seriously, in our English, Science, Foreign Language, Technology, and Math classes, we should be assigning homework like, “Play basketball for 45 minutes,” “Walk two miles,” “Toss a Frisbee with a friend for an hour,” “Do 10 push-ups,” and “Swim for 30 minutes.” These activities will do more for students learning punctuation, electromagnetism, Latin, HTML, and supplemental angles than a lot of the assignments we give. We can still give those more sedate assignments, but monitor students’ load so they can still get moving after school hours.

Speaking of time, the fifth mindset is the ratio that still works: Add a zero to the grade level for the number of minutes of homework assigned per night: 6th grade = 60 minutes, 7th grade = 70 minutes, 8th grade = 80. Be clear, though, that this is all subjects combined! Research in the books listed below indicates that after 50 to 100 minutes, depending on the student, doing homework has diminishing returns and can actually harm the school’s mission to teach students. Extended periods of doing homework become unduly burdensome on the student and his family, and the whole enterprise becomes dysfunctional. As you consider time, however, remember that it’s the type of homework or practice, not the number of minutes doing homework that makes the bigger difference in students’ learning.

Sixth, “No homework tonight” should be the default choice, not, “There is homework tonight.” Reading Alfie Kohn’s work got me thinking about this (see recommended books section below). Kohn says, teachers are on automatic pilot and assign homework because they think that’s what teachers do. Some homework has merit, but a whole lot of it really doesn’t advance our cause. This means we would never tell parents at Back-to-School night that students will have homework every night in our classes. This is inappropriate for several reasons:

1) We might have a substitute teacher one day who forgets assign the homework

2) An assembly, fire drill, or something else interrupts the class and we don’t get to the homework assignment that day

3) We shouldn’t be assigning homework just to assign homework.

4) We need to get over ourselves. Some of us claim that students must have daily practice with our topics or they will fall behind. This is a major misnomer. Research and anecdotal evidence don’t support it. The mind, including our subconscious, needs time away from studying to assimilate the learning and come back to it later with a fresh outlook. Connections are still made. Students will flourish in math, music, and foreign language by taking a day or two away from them on regular basis.

Seventh, the homework we assign needs to be compelling. As Kohn points out, people learn better when they practice things they like to study or do; they don’t learn much when practicing things they resent. (p.116) So, instead of asking students to define the vocabulary terms, ask them to consider the worth (utility, beauty) of each word and hold a “Word Bazaar” in which they barter for words to use. Norton Juster, author of, The Phantom Tollbooth, would be proud! Instead of answering comprehension questions about a history topic, ask students to read the material then write a rationale or speech as to why the topic should or should not be taught in schools, citing at least four key aspects of what they read in the textbook. Instead of doing multiple math problems on the first night of learning a new formula, ask students to build a physical model with moving parts (This could be as easy as paper shapes moved on a flat surface, objects on a string, or simple props moved in pantomime) that portray the concepts learned.

Sidebar: “Homework is like coming home and doing your taxes every night.” – Bennett and Kalish, p. 18
Eighth, let’s end the use of all homework passes in all classes. Our rationale for doing so is simple: We don’t assign anything that’s “skippable.” If we did, it would be busy-work, assigned just to assign work. Homework should matter. Not doing it should result in something noticeably less in the student. If this isn’t the case, the assignment isn’t worth assigning, and we should choose the default, “No Homework tonight” mentioned above. If we want to reward students in some way, we can use “Homework Deadline Extension” certificates on which we’ve checked a box allowing a particular assignment to be turned in one, two, or three days late, depending on the level of the reward. This doesn’t dilute the importance of the homework assignment. It still matters, students still have to do it, but it makes students feel as if they’ve earned a privilege.

Ninth, occasionally allow students to determine how best to practice the day’s learning. Giving the options creates that important ownership young adolescents crave, and it can also teach self-advocacy. Given a choice of practice activities for homework, we can help them figure out which one will have the greatest impact on their long-term retention of the skills and content. This is especially effective if we take a few moments the next day and facilitate students’ reflections on the effectiveness of his choices.

Tenth, everyone should turn in a paper regardless of whether or not they did the assignment. I found this one in Neila Connors’ wonderful book, Homework: A New Direction. This way no one knows who did and did not turn in their papers as student file by the turn-in basket. If a student didn’t do the homework assignment, he writes the following on the paper he submits:

1. Name
2. Date
3. Name of the Assignment
4. Why he didn’t do it
5. Parents’ names
6. Parents’ daytime phone numbers

During the day, we call the parents and read directly from the student’s paper as to why he didn’t have his assignment. It might be for very legitimate reasons, of course, but now we have a clear record that all stakeholders can readily access and compare to see if there’s a pattern that needs addressing. It’s particularly effective, too, if the student makes the day-time call and reads his reasoning to his parents.

Eleventh, it’s time to stop giving homework over the weekend and over long-holidays. Yes, the verdict is in: homework done over winter or spring vacation usually doesn’t result in learning. It imbues the vacation atmosphere with grim menace, sparking angry survival modes in both parents and children whose health is better achieved by enjoying each other’s company and taking respite from the daily grind. It’s true: the homework done on the last day of a student’s holiday or Sunday night before returning to school Monday rarely moves learning into long-term memory. We get more out of students during the school week when students have constructive relationships with family members and others over the weekend. We can still assign homework Friday afternoon, but it’s not due until Tuesday.

Finally, whatever we do, there must be feedback on homework assignments. This is so central to homework’s impact on student learning, it makes assigning anything without providing feedback close to a complete waste of time. Marzano and others have the research citations on this (see below), but the fact remains that if students receive feedback from themselves, their classmates, their teachers, or someone else, they learn dramatically more from the homework experience. So, in the same planning breath we use to design our homework assignments, we need to ask ourselves, “…and how will students receive descriptive feedback on this?”

Once we’ve established why and how we assign homework, we turn to how we should grade it. In short, don’t. Homework is what we do to learn the objectives and meet the standards; it is not a final decree of proficiency for any objective or assessment. Grades, on the other hand, reflect a summative declaration of what we know and are able to do regarding a standard. Just as we don’t weave your months and years of homework completion (or not) into your teacher licensure exam scores, we don’t weave homework into a student’s final test score. We don’t want the score to be raised or lowered by how many practice assignments you did prior to the exam. The routes we take to mastery will vary from person to person, but the important and honest testimony comes at the end of the learning – what have you carried forward as a result of this class? That’s what grades are supposed to report.
Go ahead and mark homework as completed with relative proficiency or not, earning a check, check-minus, zero, a 2, 1, or 0, or something similar. And if it was completed (reported only as a “Work Habit”), was it completed with enough student engagement to have been an effective learning practice for the student? If so, give full credit. If not, partial or no credit is given. All of this is formative, of course: homework is what we do in route to mastery, but not a statement of final mastery itself. Kohn would disagree with me but my experience still indicates that useful homework assignments yield development in students’ learning. If students do the assignments, they learn more than they would otherwise. The key term, however, is, “useful.” If students can demonstrate 100% mastery weeks or more down the road without doing any of the homework practice we assigned, then the assignments weren’t useful, and we have the problem, not the student. We should have assigned practice that mattered. In such situations we have no right to lower the academic grade if we have clear and consistent evidence of students’ mastery via summative assessments. The homework completion grade has no bearing on the final grade, particularly if such a grade skews the accurate report of what the student learned – either higher or lower. Accepting this premise, most schools are moving toward a policy in which homework counts 10% or less in the overall grade. Even 10% is a distorting influence in the final grade, however. I invite you to make the same move if you’re not already there. Your grades or marks will be far more accurate, useful, and ethical. Be sure of what is being promoted here: Mark your students’ homework papers, and record those marks. Just remember, however, that they do not indicate mastery. They are marks indicating completion as students practiced their learning, nothing more.

There are new books on homework coming out every year. Many of them are great for book study groups:

- Bennett, Sara, Kalish, Nancy; The Case Against Homework: How Homework is Hurting our Children and What We Can Do About It, Crown Publishers, 2006
- Connors, Neila. Homework: A New Direction, National Middle School Association, 1999

One last provocation from reading and reflecting on Kohn’s arguments: What would our lives as teachers be like if we didn’t assign or grade homework? How would we teach differently so students were sure to learn the material while in class, and over the course of a week? Are we relying too much on our homework assignments to do our teaching for us? And what hobbies, sports, vocational training, and family time could students explore with the hours now spent on completing homework assignments? In the yearnings of the student within each of us, there’s some truth waiting to be recognized. It may be time to listen to it and do the ethical thing: make homework worth doing and mark it appropriately.

Original accessed from: http://goo.gl/8RTFht
Seven Reasons for Standards-Based Grading

Patricia L. Scriffiny

Educational Leadership
October 2008 | Volume 66 | Number 2
Expecting Excellence Pages 70-74

If your grading system doesn't guide students toward excellence, it's time for something completely different. Each week brings some new idea that teachers are supposed to implement, while still preparing lessons, grading papers, and keeping their classrooms in some semblance of order. Amid all these challenges, a call to change grading policies can seem particularly unrealistic.

One grading practice that is gaining popularity is standards-based grading, which involves measuring students' proficiency on well-defined course objectives (Tomlinson & McTighe, 2006). Although many districts adopt standards-based grading in addition to traditional grades, standards-based grading can and should replace traditional point-based grades.

My school, Montrose High School, is located in a small but rapidly growing rural community in southwestern Colorado. We serve a community that is primarily white but that has a significant Latino population. After spending the last three years implementing standards-based grading in my high school math classroom, I have discovered seven solid reasons for replacing point-based grades with a standards-based system.

Reason 1: Grades Should Have Meaning

Each letter grade that a student earns at the high school level is connected to a graduation credit, and many classes reflect only one step in a sequence of learning. So what does each grade indicate to students, parents, and teachers of later courses in the sequence? When I first considered this question, I realized I had no answers. When I was pressed to describe the qualitative difference between an A, B, C, D, or F, my answers were vague. So, I developed a much more focused idea of what I want my grades to mean:

- An A means the student has completed proficient work on all course objectives and advanced work on some objectives.
- A B means the student has completed proficient work on all course objectives.
- A C means the student has completed proficient work on the most important objectives, although not on all objectives. The student can continue to the next course.
- A D means the student has completed proficient work on at least one-half of the course objectives but is missing some important objectives and is at significant risk of failing the next course in the sequence. The student should repeat the course if it is a prerequisite for another course.
- An F means the student has completed proficient work on fewer than one-half of the course objectives and cannot successfully complete the next course in sequence.

Reason 2: We Need to Challenge the Status Quo

Many notions I had at the beginning of my career about grading didn't stand up to real scrutiny. The thorny issue of homework is one example of how the status quo needed to change. I once thought it was essential to award points to students simply for completing homework. I didn't believe students would do homework unless it was graded. And yet, in my classroom, students who were clearly learning sometimes earned low grades because of missing work. Conversely, some students actually learned very little but were good at “playing school.” Despite dismal test scores, these students earned decent grades by turning in homework and doing extra credit. They would often go on to struggle in later courses, while their parents watched and worried.

Over the past three years, I have radically changed how I formally assess homework—I don't. Of course, it is essential for students to do homework that is tied closely to learning objectives and for students to see those connections (Marzano,
Pickering, & Pollock, 2001). Systematic and extensive feedback on assignments sends students the message that they can and should do homework as practice. A typical homework assignment for my students consists of a small collection of problems, each of which is linked to a learning objective. At first, I make those connections for my students, but eventually they make them on their own.

When I assign homework, I discuss with my students where and how it applies to their assessments. My goal is to get students to constantly ask themselves, “Do I know this? Can I do this?” To my surprise, my homework completion rates have remained steady over the past three years. Some students don't do all of the homework that I assign, but they know that they are accountable for mastering the standard connected to it. Of course, not every student who needs to practice always does so, but I am amazed and encouraged that students ask me for extra practice fairly regularly.

Reason 3: We Can Control Grading Practices

One of the biggest sources of frustration in schools today is the sense that we are at the mercy of factors we teachers cannot control. We cannot control student socioeconomic levels, school funding, our salaries, our teaching assignments, increasing class sizes, difficult parents, or a host of other important issues. However, we can control how we assess students.

When I approached my principal and district officials with the idea of using an experimental grading system, I received support and encouragement from all of them. In addition, a number of colleagues have been intrigued and want to make standards-based grading work in their classrooms.

If a teacher must use a point system to satisfy an administrative mandate or to use a particular grade book, that teacher can still use a standards-based system. The crucial idea is to use a system that is not based on the inappropriate use of averages. The system must not allow students to mask their level of understanding with their attendance, their level of effort, or other peripheral issues.

I have found that avoiding point values that might appear in a traditional percentage-based system is helpful because parents and students can get confused if they see numbers that look like what they've seen in the past but refer to a different scale. Teachers who have to assign points can avoid this confusion by using completely different numbers. A point value in the range of 1 to 10, for example, would not have the strong associations of a point value of 85, and thus would not be as easily misinterpreted.

Reason 4: Standards-Based Grading Reduces Meaningless Paperwork

Since I adopted standards-based grading, my load of meaningless paperwork has been drastically reduced, which provides time for more important considerations. Standards-based grading enables me to get the most from every piece of paper students turn in.

Writing feedback only on selected homework problems saves my time when marking papers while still giving me a sense of where students are in their learning. These homework assignments and other formative assessments help me judge the progress of the group as a whole before deciding how to proceed.

I don't assess student mastery of any objective until I am confident that a reasonable number of students will score proficiently, and that makes each assessment mean much more. Students who are still struggling after a significant portion of the class has demonstrated mastery can retest individually. The bottom line is that when I review any set of papers, I walk away knowing a great deal more about what my students know than I ever did before.

Reason 5: It Helps Teachers Adjust Instruction

Imagine two different grade books for the same set of students, as shown in Figure 1. Which one of the two better illustrates what students know and what they still need to learn?
Figure 1. Comparing Traditional and Standards-Based Grade Books

<table>
<thead>
<tr>
<th>Traditional Grade Book</th>
<th></th>
<th>Quiz 1</th>
<th>Chapter 1 Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Homework Average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>90</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Bill</td>
<td>50</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>Susan</td>
<td>110</td>
<td>50</td>
<td>62</td>
</tr>
<tr>
<td>Felicia</td>
<td>10</td>
<td>90</td>
<td>85</td>
</tr>
<tr>
<td>Amanda</td>
<td>95</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standards-Based Grade Book</th>
<th>Objective 1: Write an alternate ending for a story</th>
<th>Objective 2: Identify the elements of a story</th>
<th>Objective 3: Compare and contrast two stories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>John</td>
<td>Bill</td>
<td>Susan</td>
</tr>
<tr>
<td></td>
<td>Partially proficient</td>
<td>Proficient</td>
<td>Partially proficient</td>
</tr>
<tr>
<td></td>
<td>Objectives</td>
<td>Objective</td>
<td>Objective</td>
</tr>
<tr>
<td></td>
<td>John</td>
<td>Bill</td>
<td>Susan</td>
</tr>
<tr>
<td></td>
<td>Partially proficient</td>
<td>Proficient</td>
<td>Partially proficient</td>
</tr>
<tr>
<td></td>
<td>Objectives</td>
<td>Objective</td>
<td>Objective</td>
</tr>
<tr>
<td></td>
<td>John</td>
<td>Bill</td>
<td>Susan</td>
</tr>
<tr>
<td></td>
<td>Partially proficient</td>
<td>Proficient</td>
<td>Partially proficient</td>
</tr>
<tr>
<td></td>
<td>Objectives</td>
<td>Objective</td>
<td>Objective</td>
</tr>
<tr>
<td></td>
<td>John</td>
<td>Bill</td>
<td>Susan</td>
</tr>
<tr>
<td></td>
<td>Partially proficient</td>
<td>Proficient</td>
<td>Partially proficient</td>
</tr>
<tr>
<td></td>
<td>Objectives</td>
<td>Objective</td>
<td>Objective</td>
</tr>
<tr>
<td></td>
<td>John</td>
<td>Bill</td>
<td>Susan</td>
</tr>
<tr>
<td></td>
<td>Partially proficient</td>
<td>Proficient</td>
<td>Partially proficient</td>
</tr>
<tr>
<td></td>
<td>Objectives</td>
<td>Objective</td>
<td>Objective</td>
</tr>
</tbody>
</table>

The standards-based grade book gives a wealth of information to help the teacher adjust instruction. Note that two objectives (1 and 3) may require more class instruction. The notations for Objective 2, on the other hand, suggest that the class only needs practice and one student needs some reteaching.

Students can also see much more information about their learning. In the traditional grade book, Amanda would assume she is in great shape, but standards-based grading reveals that she has not mastered a crucial concept.

Gifted and talented students can be truly challenged in a standards-based classroom because if they show early mastery of fundamental skills and concepts, they can then concentrate on more challenging work that is at higher levels of Bloom's taxonomy or that seeks connections among objectives.

Students who struggle can continue to retest and use alternate assessments until they show proficiency, and they are not penalized for needing extended time. I guide students with special needs to modify their work and, if needed, develop different ways of demonstrating that they've met their proficiency goals. Their working styles can be easily accommodated in this system because modified assignments and assessments require no special adjustments in the grade book. The grade book simply shows where they are in meeting the standards, without reference to how they are demonstrating their learning or what modifications needed to be made.
Reason 6: It Teaches What Quality Looks Like

In the adult world, everything is a performance assessment. If adults on the job make poor decisions or cannot determine the quality of their own work, the results are generally undesirable. Quality matters, and the ability to measure the quality of one's own work is a learned skill.

So how can we teach this essential skill? One way to teach quality is to demand it. We must create an environment where standards can and must be met and where students are not permitted to submit substandard work without being asked to revise.

If we base our grades on standards rather than attendance, behavior, or extra credit (which often has nothing to do with course objectives), we can actually help students grapple with the idea of quality and walk away with a higher degree of self-sufficiency. We can and should report information about student performance in areas like attendance and effort, but we can report it separately from academic achievement (O'Connor, 2007; Tomlinson & McTighe, 2006).

Reason 7: It's a Launchpad to Other Reforms

When I began using standards-based grading, I quickly discovered that I needed to reexamine my curriculum. Each class needed a clear and concise set of standards with precise levels of mastery. This prompted a number of discussions with other teachers in my department, and each year we continue to adapt our objectives. No one can use standards-based grading without clear standards.

In addition to improving curriculum, I have found new ways to use formative assessments and intervention strategies. My work with special education students and English language learners in particular goes much more smoothly because all the modification needed is already built into what I do. I have also been able to work much more effectively with parents by giving them better information.

How do students respond to this style of grading? Of course, their reactions vary. It takes time, discussion, and reflection for students to understand their rights and responsibilities in such a system, and teachers must be patient as students and parents adjust. Many students have expressed increased satisfaction with having a larger degree of control over their grades, although some students do not like the revisions they are required to do. Some struggle to overcome test anxiety and need access to alternate assessments.

As for parents, many of them simply want opportunities for their children to succeed, so they are grateful for the revision and retesting. Each year, parents ask thoughtful questions, with some noting that this method of grading is more similar to evaluation in the workplace.

These seven reasons to change to standards-based grading are merely a starting point. High school teachers need to hold their own practices up to scrutiny and decide whether those practices are worth keeping. By doing so, we unleash a force for change that we can control, with our students and parents as partners.

References

Original article accessed at: http://goo.gl/Cq8F
Grading toCommunicate

TonyWinger
EducationalLeadership
November 2005 | Volume 63 | Number 3
Assessment to Promote Learning Pages 61-65

Grades can only be a shiny distraction—unless we make them a strong message.
Throughout my career as an educator, I have experienced frustration with how my traditional classroom grading practices have influenced my students' learning. When I discuss this issue with colleagues, parents, and—most important—students, I find that I am not alone in my frustration. Paradoxically, grades detract from students' motivation to learn. It is time to reconsider our classroom grading practices.

Does Grading Interfere with Learning?
As a young teacher, I found the authority to give grades empowering. The grade was my ace in the hole, providing the leverage needed to entice students to cooperate. But as time passed, it dawned on me that the manner in which I was using grades conflicted with my deeper purposes as an educator. Again and again, students met my passion for a subject with their pragmatic concern for their grade. I wanted my economics students to wrestle with issues of equity or debate the costs and benefits of a minimum wage; they wondered whether the upcoming test would be essay or multiple-choice. I wanted my sociology students to consider the powerful role that group attachments play in personal decisions about religion or romance; they cared more about how many pages they would need to write for the essay.

I wanted my students to wonder, to understand, and ultimately to be changed. Many of them simply wanted a good grade. And the irony is, they were only responding as other educators and I had conditioned them to respond. We had trained them to see grades as a commodity rather than as a reflection of learning.

Comments from a student panel that my school district organized to investigate grading practices further elucidated the problem. Students reported that they see their schoolwork as a game they play for grades—a game that at best treats learning as incidental, and at worst distracts students from making meaning. One student referred to this grade game as academic bulimia: Students stuff themselves with information only to regurgitate it for the test, with little opportunity for the thoughtful engagement that would produce deep understanding and growth.

Do Grades Measure What We Value Most?
I recall telling my students, “Work hard and your grade will be fine.” Although I did not realize it, the message to students was clear: My unconscious curriculum was one of compliance.

Rather than Principles and Practices of Economics, my class might more accurately have been named Principles and Practices of Being a Good Kid. Some students received good grades and learned little; others learned much and failed. Grades measured students' willingness to cooperate and work hard rather than their understanding of economics or their ability to use that understanding to think more clearly about their world. I was not assessing the learning that I valued most.
Do Grades Provide Accurate Feedback?
When grades are not deliberately connected to learning, they provide little valuable feedback regarding students’ academic strengths and weaknesses, and can even be counterproductive. I recently spoke with a frustrated father whose daughter is on the honor roll at her high school. He finds that despite her hard work and high grades, his daughter’s writing skills are deficient. He is having a difficult time convincing this honor student that her skills need improvement. Rather than supporting learning, her grades are actually providing misleading information.

A colleague’s experience reveals another manifestation of this problem. In the middle of the semester, she asked her language arts students to identify one area in which they hoped to improve during the second half of the course. Instead of identifying a skill, such as writing organization or reading comprehension, most students listed either tests or homework. Rather than identifying gaps in student learning, this teacher’s grading practices had focused students’ attention on the assessment tools.

Getting to Grading That Works
Three years ago, I became an instructional coach at Heritage High School in Littleton, Colorado, where I had taught for 14 years. As a result of the training I received in this new position, I began to significantly revise my approach to grading, and I now guide other teachers in doing the same. Littleton Public School District has launched a district-wide initiative to address the issue of grading practices. After a year of research and study, including soliciting input from parents and teachers, the board of education has authorized a representative teacher pilot group to explore changing how we grade our students.

The problems my colleagues and I have experienced point to a crucial disconnect between learning and grades. If we expect our grades to promote learning, then we must be sure that our grades assess and report the learning that we believe is most essential. We as educators must become more conscious of our goals: the knowledge we want our students to understand; the skills we want them to refine; the kinds of reasoning we want them to demonstrate; and the connections we hope they will make between abstract concepts and life.

Once we have clarified what knowledge, skills, reasoning, and connections we believe are essential in our classrooms, we can choose components based on this essential learning on which we will base our grades. For example, in a language arts class, the overall grades might be separated into the components of reading comprehension, writing process, writing product, speaking, literary elements, and effort/citizenship. It is important that these grade components align with the state and district standards; some may be drawn primarily from content or skills already identified by such standards. A grade that is separated into distinct components on the basis of key learning becomes a meaningful communication—to students and parents alike—about what students have and have not mastered.

Once I began deliberately defining what I wanted students to learn, a healthier grading system fell into place. In my Introduction to Sociology class for juniors and seniors, I grouped essential academic expectations into four components: conceptual understandings, application, analysis and evaluation, and formal writing.

To assess conceptual understanding, I monitored students’ basic grasp of course content. For example, I expected students to be able to identify what sociologist Charles Cooley meant by *the looking glass self* and to explain the difference between a functionalist and a conflict view of society. The application component assessed students’ ability to make personal connections between course concepts and life. The analysis and evaluation component assessed how well students could use sociological concepts to deepen and challenge their understanding of the larger society. The formal writing component assessed students’ writing skills.
Nonacademic Factors

Although grades should definitely reflect the quality of students' academic performance, many teachers believe that students' work habits, responsibility, and attitudes—what researcher Robert Marzano (2000) calls nonacademic factors—are also important.

I believe it is essential to report academic and nonacademic factors separately. We can assess a student's ability to turn things in on time and report it as part of a nonacademic grade component. This assessment, however, should not distort feedback regarding that student's ability to understand a concept or write an essay. In the previously cited language arts example, nonacademic factors are recorded under the effort/citizenship grade component. In the grading scheme for my sociology class, I included a nonacademic component called work habits, which was worth 10 percent of the overall class grade. With a disaggregated grading system, I can simultaneously give accurate feedback on students' learning of essential concepts or skills and their performance on nonacademic factors.

In keeping track of students' work in my sociology course, I grouped each course assignment under one of the five components of essential learning, depending on what kind of learning the assignment tapped. For example, because students' journal entries and reflection worksheets prompted them to connect course concepts and life, scores for those assignments counted toward the application component. I counted some assignments under more than one component; a major paper, for instance, might receive an academic grade for ideas and content grouped under analysis and evaluation and a nonacademic grade for work habits, reflecting whether the student writer completed all steps of the process on time.

I based the letter grade for each component on the average score of all assignments grouped under that component. Each component was worth a specified percentage of the overall letter grade, and I computed the overall course grade by combining the grades for the five components according to the predetermined weight of each. I updated each student's scores continually on a student summary form that I maintained online. Each student and parent could see this individual form anytime, and I also printed this report in preparation for parent-teacher conferences.

Sticky Issues

Handling Homework

When assessing homework assignments, it's especially important to distinguish between academic achievement and nonacademic factors. When we base a significant portion of a student's grade on homework, then the aggregate grade may be a more accurate measure of a student's effort than of his or her learning. In the past, students in my classes who completed homework often received good overall grades even when their actual understanding, as measured by tests, was unsatisfactory. Conversely, students who failed to turn in homework often received low or failing grades even when they had excellent understanding of the content. I do assess the quality of homework: A student who does poor work or shows a lack of understanding will get only partial credit. But my experience suggests that even the quality of the work on an assignment that goes home is more an indicator of nonacademic work habits than of academic understanding. And it is obvious that when an assignment is not turned in at all, we can draw no conclusions about the offending student's knowledge or skills.

To resolve this issue, I consider a student's diligence in doing daily homework as a nonacademic grade component and his or her in-class assessments as a measure of learning. When I combine these components into an overall grade, I weigh the work habits portion at 10–20 percent, which acknowledges the importance of nonacademic factors while placing a greater emphasis on academic learning.
Late Work

With regard to work turned in late, I make a distinction between late daily homework assignments and late major projects or papers. If daily homework is recorded only in the nonacademic portion of the grade, it seems acceptable to me that a teacher might not accept or credit late homework. A student who does not turn in all daily assignments but who has mastered the material can still receive a high grade in the academic component if he or she demonstrates strong learning through in-class assessments. Conversely, a student who turns in all of his or her homework but is not learning will receive high marks for the nonacademic portion, but not on academic components.

Major assignments like projects or papers, however, should be handled differently. Because they are important learning opportunities, they should be accepted even when they are late. The difficulty arises in determining how to assign a grade to late work. A common practice for teachers is to simply reduce the grade, but this practice confuses the issue. A lower grade for an essay turned in late does not accurately communicate how well the student has learned and performed. The grade may indicate that the student is a poorer writer than he or she actually is. With a disaggregated grade, however, the teacher can record a low work habits grade to reflect that the student missed the deadline while giving the paper a grade on the academic component that accurately reflects what the student has learned.

In my sociology class, I assigned students three formal papers. Students were required to successfully complete these assignments to pass the class. I assessed three separate components for each paper: an analysis and evaluation grade for content, a work habits grade for fulfilling the steps and turning the paper in on time, and a formal writing grade that reflected writing skills.

The first semester I tried this approach, it paid high dividends. As I collected our first formal writing assignment, in which students were to observe and document a social pattern, one student sheepishly admitted to not having completed the paper. I reminded him that although he would lose work habits points, he could still get full credit for the academic portions if he turned in a quality paper. He went back to work monitoring social patterns and turned the paper in the next week. In assessing it, I discovered that although his writing was mediocre, his ideas were inspired. This student received three grades for this assignment: an F for work habits, an A for analysis and evaluation, and a C for formal writing. I was able to report the lateness of the student’s work without dampening his enthusiasm or distorting the feedback the grade provided. Most important, the student took full advantage of this important learning opportunity: In fact, he went on to pursue sociology at the postsecondary level. Much would have been lost if I had simply told him to forget the assignment because I do not accept late work.

Extra Credit

If students are allowed to raise their grade through extra-credit work that is independent of essential learning, then that raised grade reinforces the view of grades as a commodity to be earned. When a student asks for an extra-credit assignment to raise his or her grade, I remind the student that the purpose of grades is to assess and promote learning. A low grade simply communicates a learning gap; the way to raise the grade is to learn more. I explain that although I do not believe in extra credit, I do believe in opportunities for further learning. A student who scored low on a formal paper, for example, may seek extra writing help, rewrite the paper, and try for a higher grade. If a student received a low quiz grade, he or she may take the quiz again to demonstrate mastery of the material. This approach helps reinforce the view that grades are a communication tool, not the goal.

Finding a Better Way to Motivate

If we want to keep the focus on learning, we must not depend on grades to motivate our students. In 1945, junior high school teacher Dorothy De Zouche stated, “If I can’t give a child a better reason for studying than a grade on a report card, I ought to lock my desk and go home and stay there” (p. 341). Sixty years later, assessment expert Richard Stiggins (2005) declares that “we can succeed as teachers only if we help our students want to learn” (p. 199).

As they begin their schooling, young learners are quite inquisitive, eager to read their first chapter book and excited to discover their place in the world. But many students’ innate curiosity is stifled by an education system that too often values compliance over creativity, taking tests over testing theories, memorizing over understanding, and high grades over learning.
If educators wish to convince students that we value their understanding, their reasoning, their ideas, and their creativity, we must practice what we preach. By creating meaningful grade components rooted in essential learning, separating out nonacademic factors to ensure that we assess true learning, and sharing our passion for what we teach, we can use grades as a communication tool rather than as the goal.

References

Original article accessed at: http://goo.gl/L2Ya8W
Grading and Assessment Books

The District Grading and Assessment Cohort drew a wide number of resources for their work, including books by a number of leading educational experts. The key works used included:

- *Classroom Assessment for Student Learning: Doing It Right-Using It Well* by Rick Stiggins, Judith Arter, Jan Chappuis, and Stephen Chappuis
- *Fair Isn't Always Equal* by Rick Wormeli
- *Formative Assessment and Standards-Based Grading* by Robert Marzano
- *A Repair Kit for Grading: 15 Fixes for Broken Grades* by Ken O'Connor

For the complete list of books used by the Cohort, see the last page of the District Assessment and Grading Handbook on page 30 of this guide.
What is standards-based learning?
Standards-based learning focuses a student’s learning on the essential outcomes for a class, or how well the student understands and can apply the key material in class. At the beginning of every unit, the teacher will break down the outcomes for the unit into smaller components and criteria using a detailed rubric. During the unit, the student is frequently assessed to gauge understanding and application of the material. Teachers will use a variety of assessments, such as traditional pencil-and-paper tests, projects, discussions, or reports. The class grade will be based on all of the evidence the teacher collects demonstrating a student's mastery of the essential outcomes.

The goal of this approach is to provide the teacher, student, and parent as accurate a picture as possible of the student’s learning and to encourage a conversation about how the student can master the material for the class. In particular, because learning is a process that takes place over time, the teacher will provide feedback to the student about what to focus on next, and the student will be allowed to show improved learning over time by being reassessed. If the new evidence shows a higher level of mastery, that new score replaces the old one.

How is standards-based learning different from traditional grading?
In the traditional 100-point grading system, a student’s grades are typically based on all of the work assigned in class, including classwork, homework, projects, quizzes, and tests. These scores are often arranged in the grade book based on the type of assignment rather than on the essential outcomes for the class. The grade may also include points for non-academic factors, such as participation, effort, or attitude.

Standards-based learning looks at how well a student has mastered the essential outcomes, so the grade book does not separate out tests, homework, or projects. Instead, all of the work a student does is used to assess the student’s mastery of the essential outcomes. A student’s scores from their work are tracked by essential outcomes that give the teacher, student, and parent a very detailed picture of each student’s learning. Non-academic factors like behavior, attitude, and attendance are not included in the outcome grade, but are recorded and reported separately.

Why is the district using standards-based learning?
The goal of Sheridan County School District 1 is to improve student learning by reporting grades that are accurate, consistent, meaningful, and supportive of learning, and the shift to standards-based learning is an effort to reach that goal. Here is how standards-based learning addresses each of those four criteria.

Accurate: By basing a student’s grade solely on academic factors, the teacher creates a clear picture of what the student has learned without the influence of other factors. These other factors, such as effort and attitude, are still essential, but are not part of the student’s academic grade and are communicated separately.

Consistent: For each unit, the teacher will provide a rubric that describes exactly what the student will need to master. The rubrics establish clear expectations for mastery at the beginning of a unit and are referenced consistently throughout the unit and semester.

Meaningful: A meaningful grade is one that clearly communicates what learning has taken place. In a standards-based classroom, scores are recorded by the essential outcomes rather than by type, such as tests or homework, making it easier to identify areas of strength and to address areas of concern for each student.

Supportive of Learning: This approach supports learning by focusing on the material that has or has not been learned rather than on accumulating points to reach a certain total. The reassessment policy also supports student learning by allowing new levels of learning to replace old when a student shows improvement on an outcome.
What does the number scale (4, 3.5, 3, 2.5, 2, 1.5, 1, .5 and 0) on the rubric mean?

The scores on the scale represent a learning continuum and are NOT equated to grade point average. Each of the levels builds on the others and explains the learning students have to demonstrate in order to earn a score (See the sample rubric on the last page of this document). Students must demonstrate proficiency as they move up the scale. For example a student may not earn a 3 until they demonstrate proficiency of the level 2 concepts or skills. The scale designations are as follows:

4 – The student demonstrates an in-depth understanding of the material by completing advanced applications of the material.
 - 3.5 – In addition to a 3.0 score, the student demonstrates in-depth inferences and applications with partial success.

3 – The student demonstrates proficiency on the complex, targeted knowledge and skills for the class.
 - 2.5 – In addition to a 2.0 score, the student demonstrates partial knowledge of 3.0 elements.

2 – The student understands the foundational material, but is still working to master application of the concepts and skills
 - 1.5 – The student demonstrates understanding of all 2.0 elements with help and independent understanding of some 2 elements.

1 – The student is able to demonstrate an understanding of all of the foundational material with support
 - 0.5 – The student demonstrates understanding of some 2.0 elements.

0 – Even with assistance from the teacher, the student shows no understanding of the material.

What is the grade scale for standards-based learning?

At the middle and high school level, outcome scores on the report card reflect the following number scale (4, 3.5, 3, 2.5, 2, 1.5, 1 or 0). Middle school scores are reported for each outcome. Outcome scores at the high school are averaged at the end of the semester and translated to a letter grade to determine a grade point average.

<table>
<thead>
<tr>
<th>This is the number scale score</th>
<th>This is the number scale score range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3.4 – 4.0</td>
</tr>
<tr>
<td>3</td>
<td>2.5 – 3.3</td>
</tr>
<tr>
<td>2</td>
<td>2.0 – 2.4</td>
</tr>
<tr>
<td>1</td>
<td>1.5 – 1.9</td>
</tr>
<tr>
<td>0</td>
<td>0.0 – 1.4</td>
</tr>
</tbody>
</table>
Why is the grade scale for standards-based learning different?

Standards-based grading focuses on measuring students’ mastery of a specific set of outcomes. The grade scale reflects the level of proficiency achieved for each outcome. Outcome scores on the middle school report card are reported using the number scale (4, 3.5, 3, 2.5, 2, 1.5, 1 or 0). Each outcome is reported separately and is not averaged together for a final math grade. At the high school level, the number scale grade for each outcome is averaged and then translated at the end of each semester into a traditional letter grade to determine a grade point average for transcript purposes. In order to translate the number score into a traditional letter grade, we adjust the cutoffs to reflect the 4, 3, 2, 1, 0 scale. The resulting scale is shown below.

<table>
<thead>
<tr>
<th>This is the number scale grade</th>
<th>This is the standards-based grade range</th>
<th>This is the letter grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3.4 – 4.00</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>2.5 – 3.3</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>2.0 – 2.4</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>1.5 – 1.9</td>
<td>D</td>
</tr>
<tr>
<td>0</td>
<td>0.00 – 1.44</td>
<td>F</td>
</tr>
</tbody>
</table>

One common misconception that arises when moving to SBL is that a student only needed to get a 25% percent to pass, and while technically correct, this misconception misses what exactly the 25% percent means. In a traditional grading system, a 25% means that a student answered 25% of the questions correctly. In SBL, this means that a student reached the 1.0 level on the rubric, which is based on the learning the student demonstrated and completely unrelated to how many questions the student answered correctly. This distinction is an important one as the SBL interpretation sets a much higher level of expectation for student learning.

What does EXE, MET, DNM, and NC mean?

Practice and participation in learning tasks, or homework, can support and enhance your child’s learning, therefore your student will be given a variety of learning tasks to help them master foundational concepts and apply new skills. Since learning is a process that takes place over time and at different speeds for different students, learning tasks in a standards based learning system will be scored, but not included in the final outcome grade. The purpose of scoring learning tasks is to provide detailed feedback to students and parents about student progress. You will see the following score codes in the grade book:

EXE – student performance on the learning task exceeds expectations
MET – student performance on the learning task met expectations
DNM – student performance on the learning task did not meet expectations
NC – student has not completed learning task

What does “LND” mean?

LND stands for “level not determined.” This score is used when there is not enough information to give a student a score for an outcome based on the current assessment evidence. This score may be used when a student struggles with an assessment and the teacher needs to follow up to determine if the student can do the work with support, or if the student shows mastery at the 3.0 or 4.0 levels but shows gaps on the 2.0 level. LND’s are temporary scores used while the teacher gathers more evidence to give a score and will not be in the grade book for more than two weeks. An LND does not affect the student’s overall grade.

What does “INC” mean?

INC stands for “Incomplete.” This score is used when the student has not completed the necessary assessments to be given a grade for a standard due to absences or other factors. An INC is calculated as a zero in the student’s grade to show the effect of not completing the assessment, but this score will be replaced by the student’s actual score once the student completes the necessary assessments. Any INC’s left in a student’s grade at the end of the semester will become zeroes.
How will my student be assessed?
A student’s learning is assessed using a variety of formative and summative assessments. These tools include formal assessments such as traditional paper-and-pencil tests, projects, written papers, lab reports, or verbal assessments, but they may also include informal assessments such as classroom discussions or teacher observations. Essentially, everything that a student does in a standards-based class provides the teacher with evidence of the student’s learning.

What can my student do to raise their grade in a standards-based class?
The goal in a standards-based class is to ensure that students master the essential outcomes for the class, so any efforts to raise a student’s grade will have the same goal. The student should meet with the teacher to determine which outcomes need improvement and fill out a reassessment agreement to create a plan on how to relearn the material and when to be reassessed. If the student demonstrates a higher level of mastery on the outcome assessment, then the newer score will replace the older score. Again, the focus is to improve the student’s mastery of the material, so extra credit points are not used in standards-based classes.

What does my student need to do in order to be reassessed?
After completing an assessment in a standards-based class, the student can ask for a reassessment using the process described below. The reassessment agreement is included at the end of this document.

1. The student gets a copy of the reassessment agreement from the teacher and completes the “Outcomes to Reassess” section to choose what outcomes to be reassessed on and at what levels.
2. The student completes the “Preparation Information” by picking a few activities that would help with relearning the material. The student then arranges a meeting with the teacher to discuss the agreement. The teacher may require specific activities to prepare for the reassessment, such as completing missing assignments. Any activity selected by the student or teacher must have evidence that it has been completed.
3. Together, the student and teacher will decide when, where, and how the student will be reassessed in the “Reassessment Information” section.
4. Once all of the relearning activities have been completed, the student will show the necessary evidence to the teacher, and both the teacher and student will sign the “Reassessment Approval” section of the agreement.
5. The student is now ready to be reassessed as described in the “Reassessment Information” section.

The reassessment agreement supports a student’s learning by:
- Ensuring that relearning takes place before reassessment.
- Identifying the specific steps the student must complete to be reassessed.
- Clarifying the reassessment process for both the student and the teacher.
- Identifying exactly how the student will be reassessed so there are no surprises.

If you have any additional questions about the reassessment process, please contact your student’s teacher.

Why should my student do the homework assigned in class if it isn’t included in the grade?
Many students feel that in a standards-based class they don’t have to worry about anything except their final chapter or unit test. This is incorrect. It is important for students to understand that their teacher is evaluating their performance on learning tasks, or homework, each day. Teachers analyze student work to determine growth and improvement towards mastery of a specific skill or content. When assigning a final score, every teacher has the responsibility of taking into account all the work a student does during a semester. So, if a student chooses not to do an assignment, not only are they missing an opportunity to practice a skill, they also miss an opportunity to display mastery of an outcome to their teacher.
Why doesn't my student have a grade yet?

Because standards-based learning focuses on the learning a student demonstrates, the class grade may not be updated as frequently as it was when every assignment impacted the grade. This shift is especially noticeable at the beginning of the semester when it may take a few weeks for the teacher to collect enough evidence to determine each student's level of mastery. However, while the overall outcome grade may not change as frequently, the teacher is still recording performance on other learning tasks, such as homework, quizzes and in-class activities that provide important feedback about what work is being done. This additional information is available in PowerSchool Parent Portal by clicking on a student's overall grade at the high school level, or at the middle school level by clicking on the dash that should be where the final grade is located (remember that in the middle school level there will be no overall grade listed, however, there is more information available on daily classwork if you click on the dash mark). Please contact your student's teacher at any time if you have questions about your student's grade.

Are non-academic factors, such as effort, attitude, participation, and behavior part of the class grade?

These factors have always been and will continue to be an important part of every student's success. However, in standards-based learning, these factors will be communicated separately from the student's academic grade.

How will standards-based learning affect my student's GPA and transcript?

Standards-based learning reports an overall letter grade for each high school course at the end of the semester, so it does not have any impact on a student's grade point average or transcript.

If we change school districts, how will my student's grade be transferred if the new district does not use standards-based learning?

When a student transfers to a new district, the transfer grade is determined by the student's current letter grade. For example, if the student currently has an average of 3 on the standards-based scale, the current letter grade is a B, so the transfer grade is sent as a B.

What classes are currently using standards-based learning?

Secondary math classes at SCSD 1 are using a standards-based system. We will be transitioning all of our core high school classes to standards based learning over the next few years. If you are unsure whether or not a specific class is standards-based, please contact the teacher of that class.

How can I get more information about my student's grade or about standards-based learning?

If you have questions or concerns about your student's learning in a class or if you would like more information on standards-based learning, please contact the teacher of that class for more information.
SCSD #1 Reassessment Agreement

Name: ______________________________________ Class: ___________________ Hour: ______

Outcomes to Reassess (to be completed by the student)
I would like to be reassessed on the following outcomes at the indicated levels. (Circle all that apply.)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preparation Information (to be completed by the student with teacher input)
Before my reassessment, I will complete the following activities to prepare:

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity*</th>
<th>Evidence of Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Use the list of ideas on back of this page if necessary. Your teacher may require specific activities.

Reassessment Information (to be completed by the student and teacher together)
Date: ____________________ Time: ______________ Location: ____________________

Reassessment Method (to be determined by teacher):
☐ Written response ☐ Verbal assessment ☐ Revised form ☐ Same form ☐ Other (please describe):

Student Signature Teacher Signature

Reassessment Approval
I have completed all of the necessary activities and am now ready to be reassessed.

Student Signature Teacher Signature Date

Reassessment Guidelines
- The student must complete all the activities and provide evidence of learning in order to be allowed to complete the reassessment.
- If a student is unable to take the reassessment due to missing evidence or failure to show up, the student will be allowed to reschedule the reassessment once.
- No reassessments will be allowed during the final week of a quarter or semester.
- The reassessment score will be recorded in the grade book and used to help determine the student’s grade for the outcome. Completing a reassessment does not guarantee that the student’s grade will increase.
Reassessment Study Activities

Select from the activities below to complete the “Preparation Information” section of the reassessment agreement. You can also check with your teacher to see if there are any particular activities that are recommended. If you need any additional explanation or information about any of these ideas, please see your teacher.

Sample Activities

- Complete missing assignments
- Make flashcards
- Create practice assessment
- Tutoring with a teacher
- Study your notes – 30 minute minimum
- Complete internet activities provided by your teacher
- Design a review game
- Make a poster explaining a topic or process
- Create a web diagram
- Write a summary for each of the individual topics in the rubric
- Complete review exercises in the textbook

Possible Evidence of Completion

- Completed assignments
- Completed flashcards
- Completed practice assessment with answer key
- Signed note documenting tutoring time
- Study log
- Screenshots showing completion
- Completed game
- Completed poster
- Completed diagram
- Completed summaries
- Completed exercises

Other activities provided by your teacher:

Additional Notes
Essential Outcome
The student will be able to solve linear equations in one variable.

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Additional Notes:</th>
</tr>
</thead>
</table>
| 4 | In addition to a 3.0 score, the student demonstrates in-depth inferences and applications, such as:
 - Write and solve an equation to model real world situations (either on a test or get the problem ahead of time)
 - Analyze the steps shown to solve an equation and describe the mistakes that were made
 - Solve complex equations in a new context
 - Find percent of change | |
| 3.5 | In addition to 3.0, the student demonstrates in-depth inferences and applications with partial success. | |
| 3 | While engaged in grade appropriate tasks, the student demonstrates an ability to:
 - Solve two-step and multi-step linear equations (including equations involving the distributive property and equations with variables on both sides)
 - Solve problems involving percent
 - Solve absolute value equations
 No major errors or omissions with 2.0 or 3.0 elements. | |
| 2.5 | The student demonstrates no major errors or omissions regarding the 2.0 elements and a partial knowledge of 3.0 elements. | |
| 2 | The student demonstrates no major errors or omissions regarding the simpler details and processes such as:
 - Recall inverse operations
 - Use inverse operations to solve one-step equations
 - Determine whether a given value is a solution to an equation
 However, there are major errors or omissions with 3.0 elements. | |
| 1.5 | The student demonstrates understanding of all 2.0 elements with help and independent understanding of some 2.0 elements. | |
| 1 | With help, the student demonstrates understanding of all 2.0 elements or some 2.0 and 3.0 elements. | |
| 0.5 | The student demonstrates understanding of some 2.0 elements. | |
| 0 | Even with help, the student demonstrates no understanding or skill. | |